Question

A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel...

A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel block (m= 0.0500kg), which is at rest on the table. After an inelastic collision, in which 25% of the system's kinetic energy is lost, the rubber block rebounds the way it came at a reduced speed. Determine the speed of each block after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
A 120-kg block slides towards a stationary 55-kg block at a speed of 6 m/s. What...
A 120-kg block slides towards a stationary 55-kg block at a speed of 6 m/s. What is the maximum possible loss of kinetic energy (in joules) for this collision? Round to the nearest integer. Hint: What kind of collision leads to the greatest loss of kinetic energy? Use conservation of momentum to find the velocities of each block after the collision.
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision...
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass m2 = 8m1. Prior to the collision, the center of mass of the two-block system had a speed of 4.6 m/s. What is the speed of block 2 after the collision (in m/s)? Sample submission: 8.9
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
A 1-kg block slides along frictionless surface XY with a velocity of v = 10 m/s....
A 1-kg block slides along frictionless surface XY with a velocity of v = 10 m/s. It then moves along a surface YZ with length 10 m, and uk = 0.2 until hitting an undeformed spring whose k = 1000 N/m. What is the block’s velocity just before it hits the spring? What will be the maximum compression of the spring? After leaving the spring, will the block reach surface XY? If yes, compute for the velocity of the block...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass m2 = 0.65m1. The two blocks then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
1.) A ball of mass (m) traveling at a speed (v) hits and sticks to a...
1.) A ball of mass (m) traveling at a speed (v) hits and sticks to a block of mass (M) sitting at rest on a frictionless table. Answers for this problem will be in terms of the variables m, v, M and g. Part A: What is speed of the block after the collision? Part B: Show that the mechanical energy is not conserved in this collision. What percentage of the ball’s initial kinetic energy is lost? Include a Free...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2 = 0.500m1. Next, block 2 undergoes a onedimensional elastic collision with stationary block 3 of mass m3 = 0.500m2. (a) What then is the speed of block 3? (b) Are the kinetic energy, and the momentum of block 3 greater than, less than, or the same...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT