Question

The velocity-time graph of a jogger's trip is approximated by a triangle that starts at v=0...

The velocity-time graph of a jogger's trip is approximated by a triangle that starts at v=0 at t=0, rises to a maximum at t=6 s, and then returns to v=0 at t=10s. If the maximum speed was 6 m/s, how far did the jogger go?

Homework Answers

Answer #1

Please give it a thumbs up if you find the solution helpful.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The graph gives the vertical velocity of the rocket versus time after it is launched at...
The graph gives the vertical velocity of the rocket versus time after it is launched at t = 0.0 s. The rocket starts climbing with a constant speed of 23 m/s. At t = 2.0 s the rocket engine shuts off and the rocket is then in free-fall motion and falls back to the ground. What maximum height above the ground does the rocket reach?
A car starts at t=0 with a velocity of 25 m/s. It drives with a constant...
A car starts at t=0 with a velocity of 25 m/s. It drives with a constant velocity for 1 minute, then it accelerates with a constant acceleration of 0.5 m/s^2 for 20 seconds, then it continues with a new constant velocity for 1 minute. Draw a graph of the velocity versus time. Calculate the total distance the car travels.
The object starts moving along a straignt line from point A with velocity v(t)=(t-2), where time...
The object starts moving along a straignt line from point A with velocity v(t)=(t-2), where time t is measured in seconds and v(t) in meters per second. A- How far from A is the object going to be 11 seconds from the start? B-What distance is the object going to cover in the first 11 seconds?
A Particle is subjected to a = -ks. It starts at the origin s = 0...
A Particle is subjected to a = -ks. It starts at the origin s = 0 with an initial velocity v0 = 9.7 m/s at time t = 0, and the magnitude of k is 0.17. If t= 5.5 sec what is s, v, and a?
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k. Find its velocity, v(t), and position, r(t), at time t.
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
1. An object moving vertically in free fall has an initial velocity vi m/s, starts at...
1. An object moving vertically in free fall has an initial velocity vi m/s, starts at y=0, and rises to a height of y=h. vi= 27 m/s Positive numbers are in the upward direction, and the object may drop below its initial position. 2. An object moving vertically in free fall has an initial velocity vi m/s, starts at y=0, and rises to y=h in t seconds, reaching a final velocity of vf m/s. Find yf if:vi= 38 m/s t=...
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k....
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k. Its acceleration is ⃗a(t) = 4t⃗i + 3t⃗j − ⃗k. Find its position at t = 3.
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero velocity at t = 0.00 s and reaches a maximum velocity, vmax, after a total elapsed time, ttotal. If the initial position of the particle is x0 = 7.29 m, the maximum velocity of the particle is vmax = 11.3 m/s, and the total elapsed time is ttotal = 25.0 s, what is the particle's position at t = 16.7 s? b. At t...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT