Question

Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well...

Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential well with walls at x = 0 and x = a. If and are given in Heisenberg picture, how can we find them in Schrodinger and interaction picture?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L,...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L, x, y ∈ [0, L]. There is a weak potential in the well given by V (x, y) = V0L2δ(x − x0)δ(y − y0) . Evaluate the first order correction to the energy of the ground state.    Evaluate the first order corrections to the energy of the first excited states for x0 =y0 = L/4. For the first excited states, find the points...
particle of mass m is moving in a one-dimensional potential V (x) such that ⎧ ⎨...
particle of mass m is moving in a one-dimensional potential V (x) such that ⎧ ⎨ mω2 x2 ifx>0 V (x) = 2 ⎩ +∞ if x ≤ 0 (a) Consider the motion classically. What is the period of motion in such potential and the corresponding cyclic frequency? (b) Consider the motion in quantum mechanics and show that the wave functions of the levels in this potential should coincide with some of the levels of a simple oscillator with the...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
1. Consider a particle with mass m in a one dimensional potential V (x) = A/x...
1. Consider a particle with mass m in a one dimensional potential V (x) = A/x + Bx, x > 0. (a) Expand the potential V about its minimum value to quadratic order. (b) Find the lowest two stationary state energies in terms of A, B, m and fundamental constants.
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the probability that the particle is in its ground state is in a) The left third of the box: 0 ≤ ? ≤ ?/3 b) The middle third of the box: ?/3 ≤ ? ≤ 2?/3 c) The right third of the box: 2?/3 ≤ ? ≤ L After doing parts a), b), and c): d) Calculate the sum of the probabilities you got for...
For the infinite square-well potential, find the probability that a particle in its third excited state...
For the infinite square-well potential, find the probability that a particle in its third excited state is in each third of the one-dimensional box: (0 ≤ x ≤ L/3) (L/3 ≤ x ≤ 2L/3) (2L/3 ≤ x ≤ L)
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
For the infinite square-well potential, find the probability that a particle in its fourth excited state...
For the infinite square-well potential, find the probability that a particle in its fourth excited state is in each third of the one-dimensional box: a)  (0 ≤ x ≤ L/3) b) (L/3 ≤ x ≤ 2L/3) c) (2L/3 ≤ x ≤ L)
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find...
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find wavefunction ψn(x) under assumption that the wavefunction in 1 dimensional box whose potential energy U is 0 (0≤ z ≤L) is normalized (2) Find eighenvalue En of electron (3) If the yellow light (580 nm) can excite the elctron from n=1 to n=2 state, what is the width (L) of petential well?