Question

The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at...

The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at 57.2oC. However, it was found that at equilibrium at 57.2oC and 1 atm that xA=0.400 and yA=0.516, which are the liquid and vapor phase mole fractions of acetone, respectively. Using Raoult’s Law, calculate the activities and activity coefficients of each component.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
By measuring the equilibrium between liquid and vapor phases of an acetone (A) / methanol (M)...
By measuring the equilibrium between liquid and vapor phases of an acetone (A) / methanol (M) solution at 57.2oC at 1.00 atm, it was found that xA = 0.400 when yA = 0.516. Calculate the activities and activity coefficient of both components in this solution on the Raoult’s law basis. The vapor pressures of the pure components at this temperature are: pA* = 105 kPa and pM* = 73.5 kPa. (xA ia the mole fraction in the liquid and yA...
The vapor pressure of pure component A is 42.0 kPa at 298 K. The vapor pressure...
The vapor pressure of pure component A is 42.0 kPa at 298 K. The vapor pressure of pure component B is 29.0 kPa at the same temperature. Which of the two substances has the lower normal boiling point. Assuming an ideal liquid solution of A and B has mole fraction A equal to 0.400, What are the partial pressures and the total pressure over the liquid assuming Raoult’s law applies. What is the composition of the vapor based on Dalton’s...
15 OC, where the pure vapor pressures are 12.5 mmHg for water and 32.1 mmHg for...
15 OC, where the pure vapor pressures are 12.5 mmHg for water and 32.1 mmHg for ethanol. According to Raoult’s Law, the pressure of a component in a solution is equal to its pure vapor pressure times its mole fraction, that is PA = () (XA). Use Raoult’s law to determine the vapor pressure of each component in the solution. Then, add them to find the total vapor pressure. Show all equations and conversion factors
A mixture of acetone (1) and chloroform (2) at 10 atmospheres creates an azeotrope at 64.6...
A mixture of acetone (1) and chloroform (2) at 10 atmospheres creates an azeotrope at 64.6 ºC. At the azeotrope point, the mole fraction (x1) of acetone in the liquid phase is given as 0.335. The saturation vapor pressures of acetone and chloroform at 64.6 ° C are 1.31 and 0.98 atm, respectively. Calculate the activity coefficients of acetone and chloroform in azeotrope.
At 100C, the vapor pressures of hexane and octane are 1836 and 354 torr, respectively. A...
At 100C, the vapor pressures of hexane and octane are 1836 and 354 torr, respectively. A certain liquid mixture of these two components has a vapor pressure of 667 torr at 100C. Obtain the molar fractions in the liquid mixture and in the vapor phase. Suppose an ideal mixture.
Please show all work. Thanks! Consider a solution with xA = 0.220 at 30?C in equilibrium...
Please show all work. Thanks! Consider a solution with xA = 0.220 at 30?C in equilibrium with the vapor. The vapor pressures of the pure components at this temperature are: p? A = 73.0kPa and p? B = 92.1kPa. (a) Predict the vapor pressure and its composition at these conditions assuming ideal solution. (b) Experimentally it was found that the actual vapor pressure was 1.00atm and yA = 0.314. Calculate the activities and activity coe?cients of both components in this...
The vapor pressure of pure Freon 11 and pure Freon 12 at 25ᵒ C are 15...
The vapor pressure of pure Freon 11 and pure Freon 12 at 25ᵒ C are 15 lb/in2 and 84 lb/in2 respectively. In the preparation of pharmaceutical aerosols, these two propellants are mixed together and the mole ratio of Freon 11 in the mixture is 0.6. Compute the partial vapor pressures of each of Freon 11 and Freon 12 and total vapor pressure of the mixture, assuming that the mixture follows Raoult’s law?
The equilibrium vapour pressures of ethanol and chloroform at 45oC are 230.33 mbar and 578.0 mbar...
The equilibrium vapour pressures of ethanol and chloroform at 45oC are 230.33 mbar and 578.0 mbar respectively. The Henry’s law constants for ethanol at 45oC is 1030.3 mbar. A non‐ideal solution of the two liquids has a mole fraction of ethanol in the liquid phase of 0.115.  The equilibrium vapour pressure of chloroform above the solution is 533.7 mbar and the equilibrium vapor pressure of the ethanol is 73.95 bar. (a) Find the mole fraction of ethanol in the vapour phase...
The vapor pressures of benzene (C6H6) and hexane (C6H14) at 75°C are 648 mm Hg and...
The vapor pressures of benzene (C6H6) and hexane (C6H14) at 75°C are 648 mm Hg and 921 mm Hg, respectively. (a) If 330.0 g benzene is mixed with 730.0 g hexane at 75°C, what are the mole fractions of benzene and hexane in this solution? mole fraction of benzene mole fraction of hexane ? (b) Assuming this is an ideal system that obeys Raoult's law, find the partial vapor pressure of each component over the solution. vapor pressure of benzene...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of the incident ray 2. is equal to its emissivity 3. varies with temperature 4. varies with wavelength of the incident ray A liquid is in equilibrium with its vapor at its boiling point. On an average, the molecules in the liquid and gaseous phases have equal 1. potential energy. 2. kinetic energy. 3.temperature. 4. intermolecular forces of attraction. A liquid of density 1000 kg/m3...