Question

A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa,...

A steam turbine receives steam from two boilers.

One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C.

The exit state is 10 kPa, with a quality of 96%.

The actual power output is 22MW.

A steam turbine receives steam from two boilers.

One flow is 5 kg/s at 3 MPa, 700°C and the other flow is 15 kg/s at 800 kPa, 500°C.

The exit state is 10 kPa, with a quality of 96%.

The actual power output is 22 MW across the turbine.

Please find the ISENTROPIC power output across the turbine.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power output of the turbine is 6 MW, determine: i)          Mass flowrate of the steam flowing through the turbine.                                      ii)        The isentropic efficiency of the turbine.
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of...
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of 2 kg/s and leaves at 100 kpa. The isentropic efficiency of the turbine is 90%. Find (12 points) (a) Actual work output of the turbine _______________ (7 points) b) Maximum work output of the turbine_______________(3 points) (c) Entropy change during this process __________________________(2 points)
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is...
Steam goes through an adiabatic turbine at 2 kg/s. The power created by the turbine is 1523.5 kW. Determine the isentropic efficiency of the turbine. Entrance conditions: 3 MPa and 400°C Exit conditions: 30 kPa
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine...
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine at 4.5 MPa, 600°c and 85 m/s and leaves the turbine at 40 kPa, quality of 0.8 and 50 m/s. Determine : a) the power output b) the turbine inlet area
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10...
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10 kPa with a quality of 90 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5 MW
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity...
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity of 16 m/s. The exit is at 150 kPa, 250°C and very low velocity. Find the power produced and the rate of entropy generation.
Steam enters an adiabatic turbine at 5 MPa , 800 C and leaves at 50 kPa,...
Steam enters an adiabatic turbine at 5 MPa , 800 C and leaves at 50 kPa, 150 C. Determine the isentropic efficiency of the turbine 73% 10% 100% 96%
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT