Question

Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s)...

Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s) from the following data:

Hf 0 [CsCl(s)] = -442.8 kJ/mol; enthalpy of sublimation of Cesium is 78.2 kJ/mol; enthalpy of dissociation of Cl2 (g) = 243 kJ/mol Cl2 ; IE1 for Cs(g) = 375.7 kJ/mol; electron affinity enthalpy-EA1 for Cl(g) = -349kJ/mol.

- need answer fast - thanks

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
calculate the lattice energy of CsCl using a Born-Haber cycle.
calculate the lattice energy of CsCl using a Born-Haber cycle.
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2....
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2. Na(g) → Na+(g) + e-(g)    ΔrH = IE1 = 500 kJ mol-1 Na(s) → Na(g)    ΔsubH = 107 kJ mol-1 F-(g) → F(g) + e-(g)    ΔrH = EA1 = 329 kJ mol-1 Na(s) + 1/2 F2(g) → NaF(s)    ΔfH = -569 kJ mol-1 Na+(g) + F-(g) → NaF(s)    ΔlattH = -928 kJ mol-1
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of...
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of the Born-Haper cycle. b. using the information below, calculate the stadarn enthalpy formation for MgO. Be sure to label the steps of the cycle with equations and corresponding energy values. values. Lattice energy for MgO: -3791 kj/mol heat of sublimination for Mg: +147.7 kj/mol Bond dissociation for O2: +498.4 kj/mol First ionization energy for Mg: +738 kj/mol second ionization energy for Mg: +1451 kj/mol...
te the lattice energy for LiF(s) given the following: sublimation energy for Li(s) +166 kJ/mol ∆Hf...
te the lattice energy for LiF(s) given the following: sublimation energy for Li(s) +166 kJ/mol ∆Hf for F(g) +77 kJ/mol first ionization energy of Li(g) +520. kJ/mol electron affinity of F(g) –328 kJ/mol enthalpy of formation of LiF(s) –617 kJ/mol A. none of these B. –650. kJ/mol C. 285 kJ/mol D. 800. kJ/mol E. 1052 kJ/mol
Construct a Born-Haber cycle to calculate the lattice energy of MgCl2. The CRC Handbook of Chemistry...
Construct a Born-Haber cycle to calculate the lattice energy of MgCl2. The CRC Handbook of Chemistry and Physics lists the MgCl2 lattice energy as 2540 kJ mol-1. How does your answer compare to the literature value?
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data:...
Calculate the second ionization energy of the metal M (ΔHion2° in kJ/mol) using the following data: Lattice enthalpy of MO(s), ΔHl° = -2297 kJ/mol Bond dissociation enthalpy of O2(g) = +498 kJ/mol First electron affinity of O = -141 kJ/mol Second electron affinity of O = +744 kJ/mol Enthalpy of sublimation of M = + 102 kJ/mol First ionization energy of M = + 340 kJ/mol Standard enthalpy of formation of MO(s), ΔHf° = -336 kJ/mol Refer to the textbook...
Calculate the energy of electrostatic attractions of LiCl(s). The following information is needed. Heat of sublimation...
Calculate the energy of electrostatic attractions of LiCl(s). The following information is needed. Heat of sublimation for Li(s)= 161 kJ/mol Eea for Cl(g)= −349 kJ/mol Bond dissociation energy for Cl2(g)= 243 kJ/mol Ei for Li(g)= 520 kJ/mol Li(s)+12Cl2(g)→LiCl(s)ΔE= −409 kJ/mol
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl...
Given the following information: Energy of sublimation of K(s) = 77 kJ/mol Bond energy of HCl = 427 kJ/mol Ionization energy of K(g) = 419 kJ/mol Electron affinity of Cl(g) = –349 kJ/mol Lattice energy of KCl(s) = –705 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2K(s) + 2HCl(g) → 2KCl(s) + H2(g) ΔE = ______ kJ
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g)...
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g) → H(g) + F(g) bond energy of HF = 565 kJ/mol Li(g) → Li+(g) + e– ionization energy of Li(g) = 520. kJ/mol F(g) + e– → F–(g) electron affinity of F(g) = -328 kJ/mol Li+(g) + F–(g) → LiF(s) lattice energy of LiF(s) = -1047 kJ/mol H2(g) → 2H(g) bond energy of H2 = 432 kJ/mol Calculate the change in enthalpy for: 2Li(s)...
The element titanium displays an exceptional affinity for oxygen and when heated in air immediately forms...
The element titanium displays an exceptional affinity for oxygen and when heated in air immediately forms TiO2. This substance is the most widely used white pigment in paints, cosmetic skin care products, and sunscreens. The +4 oxidation state for Ti should, because of the high charge and small ionic radius (82pm), be difficult to stabilize in an ionic lattice. Indeed, for years I have taught that ionic charges > +3 are not stable in ionic structures. Perform appropriate calculations, using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT