Question

Question Number II (17 Marks) Ethanol (EtOH) can be produced by the hydration of ethylene, C2H4...

Question Number II Ethanol (EtOH) can be produced by the hydration of ethylene, C2H4 + H2O ⇔ C2H5OH, at 300°C and high pressure with a phosphoric acid catalyst. Downstream of the reactor, a condenser is used to separate the product, which contains only EtOH and H2O, from a recycle stream that mixes with the fresh feed before entering the reactor. The fresh feed contains 30 mol% C2H4 and the remainder is steam. The single pass conversion is 20%.

a. Draw and label the process flowchart. (4)

b. Determine how many moles of product are produced per mole of fresh feed. (5)

c. Determine how many moles of ethylene are recycled per mole of fresh feed. (4)

d. What is the overall conversion of ethylene? (2)

e. If inert species are present in the feed, what other type of stream will be required in the process?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts...
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts some the ethanol to diethyl ether (DEE). In one process, a fresh feed containing ethylene, non-condensable inerts, and water are mixed with a recycle stream. The combined stream is fed to the reactor and it contains 182 mol/min of ethylene. While the fresh feed contains 9 moles of ethylene per mole of inerts, after mixing with recycle stream, the mole ratio of inerts to...
Ethylene oxides is produced by the catalytic oxidation of ethylene: C2H4 (g)+ (1/2)O2---> C2H4O (g) An...
Ethylene oxides is produced by the catalytic oxidation of ethylene: C2H4 (g)+ (1/2)O2---> C2H4O (g) An undesired competing reaction is the combustion of ethylene to CO2. The feed to a reactor contains 2 mol C2H4/mol O2. The conversion and yield in the reactor are respectively 25% and 0.70 mol C2H4O produced/mol C2H4 consumed. A multiple-unit process separates the reactor outlet stream component: C2H4 and O2 are recycled to the reactor, C2H4O is sold, and CO2 and H2O are discarded. The...
Acetaldehyde is synthesized by the catalytic dehydrogenization of ethanol: C2H5OH ? CH3CHO + H2 Fresh feed...
Acetaldehyde is synthesized by the catalytic dehydrogenization of ethanol: C2H5OH ? CH3CHO + H2 Fresh feed (pure ethanol) is blended with a recycle stream (95 mole% ethanol and 5% acetaldehyde), and the combined stream is heated and vaporized, entering the reactor at 280?C. Gases leaving the reactor are cooled to -40?C to condense the acetaldehyde and un-reacted ethanol. Off-gas from the condenser is sent to a scrubber, where the uncondensed organic compounds are removed and hydrogen is recovered as a...
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by...
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by mole) and stoichiometric proportion of the reactants (N2 and H2) is fed into the system at the rate of 100 mol/min. The components enter a reactor, and then all ammonia is separated from the other components and leaves the process. The other components are recycled back to the feed stream, with a portion being purged from the system. The mole percentage of argon in...
Biodiesel fuel—a sustainable alternative to petroleum diesel as a transportation fuel—is produced via the transesterification of...
Biodiesel fuel—a sustainable alternative to petroleum diesel as a transportation fuel—is produced via the transesterification of triglyceride molecules derived from vegetable oils or animal fats. For every 9 kg of biodiesel produced in this process, 1 kg of glycerol, C2H8O3, is produced as a byproduct. Finding a market for the glycerol is important for biodiesel manufacturing to be economically viable. A process for converting glycerol to the industrially important specialty chemical intermediates acrolein, C2H4O, and hydroxyacetone (acetol), C3H6O2, has been...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT