Question

To determine the effect of the temperature dependence of the thermal conductivity on the temperature distribution...

To determine the effect of the temperature dependence of the thermal conductivity on the temperature distribution in a solid, consider a material for which this dependence may be represented by: k = k0 + a T, where “k0“ is a positive constant and “a” is a coefficient that may be positive or negative. Starting with a steady-state energy balance, derive a relationship for temperature (T) as a function of distance (x) from the lower temperature wall. You may assume that there is no heat generation within the wall.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The thermal conductivity of a sheet of rigid,extruded insulation is k = 0.020 W/(m*K). The measured...
The thermal conductivity of a sheet of rigid,extruded insulation is k = 0.020 W/(m*K). The measured temperature difference across a 30-mm-thick sheet of the material is T1-T2=10 C. a.) Assuming 1-D, steady state conditions withouth thermal energy generation in the material, what is the heat flux through a 2 m x 3 m sheet of the insulation? b.) What would be the effect on the rate of heat transfer through the sheet if a material with a relatively higher thermal...
The steady-state temperature distribution inside a solid object is described by the following expression, where x...
The steady-state temperature distribution inside a solid object is described by the following expression, where x is the spatial co-ordinate: T(x) =2x3- 3x2 + x +10 If the thermal conductivity and thickness of the solid are 10 W.m-1.K-1 and 0.8 m respectively, what will be the form of heat flux expression? At what point within the solid does the heat flux reach a maximum (or minimum)?
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and...
Consider a cube of density, specific heat, and thermal conductivity of 2700 kg/m3, 0.896 kJ/kg-K, and 204 W/m-K, respectively. The cube is 5 cm in length, and is initially at a temperature of 20 oC. For t>0, two of the boundary surfaces are insulated, two are subjected to uniform heating at a rate of 10,000 W/m2, and two dissipate heat by convection to an ambient temperature of 20 oC, with a heat transfer coefficient of 50 W/m2-K. Assuming lumped capacitance...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m K in which heat is generated uniformly at a constant rate of q˙ = 6 × 10^5 W/m^3 . One side of the plate is insulated while the other side is subjected to convection in an environment at 30◦C with a heat transfer coefficient of h = 60 W/m2 K. Considering six equally spaced nodes with a nodal spacing of 1 cm, (a) Sketch...
Gas with a thermal conductivity of k = 0.04 W/mk and prandtl number of 0.7 is...
Gas with a thermal conductivity of k = 0.04 W/mk and prandtl number of 0.7 is flowing at anaverage velocity of 0.5 m/s through a 2 mm diameter tube at a Reynolds number of 50. The heat capacity rate for the gas flowing through the tube is 0.001 kJ/s. The inlet temperature of the gas is 20C. There is a constant heat flux of 200 W/m^2 transferred from the tube wall into the gas. a) What is the Nu at...
A solid cylinder of radius R is well insulated at both ends, and its exterior surface...
A solid cylinder of radius R is well insulated at both ends, and its exterior surface at r R is held at a fixed temperature, TR. Heat is generated in the solid at a rate per unit volume given by q = r(1-r/R), where「= constant. The thermal conductivity of the solid may be assumed constant. Use the conduction equation together with arn appropriate set of boundary conditions to derive an expression for the steady- state temperature profile, T(r), in the...
The fuel element of a nuclear reactor is in the shape of a plane wall of...
The fuel element of a nuclear reactor is in the shape of a plane wall of thickness L = 20 mm. It is being maintained at a constant temperature of 250ºC on both of its surfaces. At normal operating power, heat is generated uniformly within the element at a volumetric rate of q = 107 W/m3. A departure from the steady-state conditions associated with normal operation will occur if there is a change in the generation rate. Consider a sudden...
Air at freestream velocity U∞=16 ms, and free steam temperature      T∞=50℃ is flowing over a plate...
Air at freestream velocity U∞=16 ms, and free steam temperature      T∞=50℃ is flowing over a plate surface that is at temperature Ts=100℃. The velocity and thermal boundary layers developing on the surface have been shown in the figure. Also shown are the tangents to the velocity and temperature profiles at the surface y=0. If the density of air is ρ∞=1.1 kgm3, viscosity μ=1.963×10-5kgm∙s, and thermal conductivity k=0.0274Wm∙K then, calculate (a)        the wall shear stress, τw (b)       coefficient of skin friction,...
A thin metallic wall may be constructed using copper (properties are given in the table). The...
A thin metallic wall may be constructed using copper (properties are given in the table). The piping is required to have a radius r = 0.008 m and carries steam at 385 K. The wall is inside a room surrounded by air at a temperature of 298 K. The wall is insulated with a material (properties are given in the table). Properties Copper Insulation material Thermal Conductivity (W/m per ˚C) 385 0.071 Density (kg/m3) 8940 453 i. If the external...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The...
Homework-9 Due: Q) A fuel plate is fabricated from 0.3 cm thick 1.5% enriched uranium. The cladding is 0.25 mm 304 stainless steel. The coolant saturation temperature is 260 oC. The average thermal neutron flux is 2.5 X 1014 neutrons/cm2 /s. The surface temperature of the clad is 350 oC. Assume any missing data to answer the following questions:. 1) Write an expression of the heat generated per unit volume 2 What is the heat flux at the surface of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT