Question

An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser...

An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser pressure at 1 psia. There are three feedwater heaters placed optimally as follows: (a) the high-pressure heater is of the closed type with drains cascaded backward; (b) the intermediate-pressure heater is of the open type; (c) the low- pressure heater is of the closed type with drains pumped forward. Each of the turbine sections has the same polytropic efficiency of 90 percent. The pumps have polytropic efficiencies of 80 percent. Calculate (a) the mass flow rate at the turbine inlet in pound mass per hour, (b) the mass flow rate to the condenser, (c) the mass flow rate of the condenser cooling water, in pound mass per hour, if it undergoes a 25°F temperature rise, (d) the cycle efficiency, and (e) the cycle heat rate, in Btus per kilowatt hour.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The...
A Rankine cycle operates with turbine inlet conditions of 600 psia and 600 degrees F. The steam is expanded through the turbine to a final exhaust pressure of 10 psia. What is the work done by the turbine, in BTU/lbm? State your answer to the nearest whole number. Example: 123
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 6 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Use steam tables. The error caused in the thermal efficiency if...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400 lbf/in2 and 1000°F. The condenser pressure is 2 lbf/in.2 The net power output of the cycle is 350 MW. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser. a) Determine the mass flow rate of steam, in lb/h. b) The rate of heat transfer, in Btu/h, to the working fluid passing through the...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. a) Draw and label the T-s diagram for this cycle b) Determine the cycle’s thermal efficiency c) Determine the mass flow rate of the steam in the boiler (kg/h) d) Determine...