Question

. One mole of carbon dioxide is compressed adiabatically from 1 bar and 25ºC to 10...

. One mole of carbon dioxide is compressed adiabatically from 1 bar and 25ºC to 10 bar. Due to poor design of the compressor, the work required is 25% more than is theoretically necessary (i.e., a reversible compressor). What is the temperature of the carbon dioxide and how much work is required for the change in state?

Homework Answers

Answer #1

We will first require the value of K to solve this problem

K( for carbon dioxide) = 1.3

1. Outlet temperature of carbon dioxide

T1 = 25 oc = 298.15 k

p1 = 1 bar

P2 = 10 bar

T2 = 507.2289 K

2. work required for an adiabatic process

W = 5794.275 J

now 25 % more than theoretical work is required

Actual work required = 1.25*5794.275 = 7242.84376 Joule

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Carbon dioxide (CO2) gas is compressed at steady state from 0.8 bar and 17 °C to...
Carbon dioxide (CO2) gas is compressed at steady state from 0.8 bar and 17 °C to 3.5 bar with a compressor drawing 10 kW of power. The CO2 flows through the compressor at a rate of 0.1 m3/s through an inlet orifice that is 200 cm2. The gas leaves the compressor at a velocity of 12 m/s. Heat loss from the compressor to the surroundings is roughly 2% of the power fed to the compressor. In addition to the Give,...
Problem 6.100 SI Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at...
Problem 6.100 SI Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 10 bar, 590 K. The CO2 is modeled as an ideal gas, and kinetic and potential energy effects are negligible. For the compressor, determine: (a) the work input, in kJ per kg of CO2 flowing, (b) the rate of entropy production, in kJ/K per kg of CO2 flowing, and (c) the percent isentropic...
One mole of an ideal gas with is compressed adiabatically in a single stage with a...
One mole of an ideal gas with is compressed adiabatically in a single stage with a constant opposing pressure equal to 10atm. pressure is 10 atm. Calculate the final temperature of the gas, w, q, ΔU and ΔH. HINT – this is not reversible expansion.
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar...
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar and 25°C to 6.5 bar and 120°C. The compressor rejects 0.5 kJ as heat to the surrounding at 293K. Calculate: 1.     The enthalpy change of the gas (in kJ) 2.     The entropy change of the gas (in J.mol-1) 3.     The work required for the compression (in kJ) 4.     The ideal work of the process (in kJ) 5.     The thermodynamic efficiency The lost work (in kJ)
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is...
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is then compressed adiabatically with a constant pressure of 5.00 bar until equilibrium is reached. i. What is the final temperature of the nitrogen if it is treated as an ideal gas with molar heat capacity CP = 7/2 R ? ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the compression. (Hint: Because the enthalpy is a state...
(Ideal, reversible, adiabatic flow compressor) Methane is compressed from 298 K and 1 atm to 4...
(Ideal, reversible, adiabatic flow compressor) Methane is compressed from 298 K and 1 atm to 4 atm. What is the work required per mole? And, what is the final temperature?
Carbon dioxide gas is compressed at steady state from a pressure of 16 lbf/in2 and a...
Carbon dioxide gas is compressed at steady state from a pressure of 16 lbf/in2 and a temperature of 32oF to a pressure of 50 lbf/in2 and a temperature of 110oF. The gas enters the compressor with a velocity of 30 ft/s and exits with a velocity of 80 ft/s. The mass flow rate is 3000 lb/hr. The magnitude of the heat transfer rate from the compressor to its surroundings is 5% of the compressor power input. Use the ideal gas...
1 mole of a non-ideal gas is compressed isothermally at 100°C from 1 bar to 50...
1 mole of a non-ideal gas is compressed isothermally at 100°C from 1 bar to 50 bar. What are the heat and work needed for this (reversible) compression if the gas conforms to the principle of corresponding states? The critical properties of the non-ideal gas are Tc = 406 K and Pc = 11.3 MPa.
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 =...
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 14 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
One mole of H2O(l) is compressed from a state described by P =1.00 bar and T...
One mole of H2O(l) is compressed from a state described by P =1.00 bar and T = 350. K to a state described by 515 bar and 795 K . In addition, β=2.07×10−4K−1 and the density can be assumed to be constant at the value 997 kgm−3 . Calculate ΔS for this transformation, assuming that κ = 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT