Question

Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are:...

Synthesis gas may be produce by the catalyst reforming of methane with steam. The

reactions are:

CH4 + H2O → CO + 3H2

CO + H2O → CO2 + H2

A small plant is being to produce 1000 mol/s of hydrogen (H2) by the reactions. 280

mol/s of Methane with 100 % of excess steam (excess % relative to the reaction one)

are fed to the heat exchanger at 150 °C and heated with superheated vapor. The

superheated vapor inlet to the heat exchanger at 10 bar and 750 °C and leaves

saturated at the same pressure. The mixture of methane and steam leaved the heat

exchanger and inlet to the reactor at 600 °C. The methane reaction conversion is 95%,

and the products emerge from the reactor at 1000 °C.

State any assumptions:

Base the information above, do or answer the following:

a) Draw the diagram of the process.

b) Solve the mass balances.

c) Determine the CO conversion in the second reaction

d) Determine the heat gained by the mixture of methane and steam in the heat

exchanger [kW].

e) Calculate the amount of superheated vapor fed to the heat exchanger [kg/s]

f) Determine the heat of reaction for both reaction at 25 °C in [kJ/mol]

g) Determine the heat lost/gained by the by the reactor [kW]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One method for the manufacture of “synthetic gas” is the catalytic reforming of methane with steam...
One method for the manufacture of “synthetic gas” is the catalytic reforming of methane with steam at high temperature and atmospheric pressure: CH4 (g)+ H2O(g)→ CO(g)+ 3H2 (g) The only other reaction to be considered is the water-gas-shift reaction: CO (g)+ H2O(g)→ CO2 (g)+ H2 (g) If the reactants (methane and steam) are supplied in the ratio 2 mol steam to 1 mol methane, and if heat is supplied to the reactor so that the products reach a temperature of...
An isobaric reactor is fed an equimolar mixture of carbon monoxide (CO) and steam (H2O) at...
An isobaric reactor is fed an equimolar mixture of carbon monoxide (CO) and steam (H2O) at 400 K and 1 bar. If 60% of the H2O is converted to H2 through the following reaction, calculate how much heat must be added to the reactor in kJ/mol H2 produced if the product stream leaves the reactor at 700 K. Assume ideal gas behavior for all species. CO(g) + H2O(g) → CO2(g) + H2(g)
The steam reforming reaction can be described by the following two reactions: CH4 +H2O ↔ CO+3H2...
The steam reforming reaction can be described by the following two reactions: CH4 +H2O ↔ CO+3H2 CH4 +2H2O ↔ CO2 +4H2 Assume that both these reactions achieve equilibrium at 600 K. The equilibrium constants at this temperature for the two reactions are 0.41 and 1.09 respectively. Calculate the equilibrium composition if the starting composition is 5 moles of steam and 1 mole of methane at a pressure of 2 atm.
135 moles of methane and 45 moles of oxygen are fed into a reactor: CH4 +...
135 moles of methane and 45 moles of oxygen are fed into a reactor: CH4 + O2 ---> C2H2 + CO + H2 a. identify the excess reactant and the % excess b. What is the extent of reaction if the reaction goes to completion? c. If 30 moles of O2 is left after reaction, determine the fractional conversion of O2, the fractional conversion of CH4 and the extent of reaction.
A fuel gas containing 40.00 mole% methane and the balance ethane is burned completely with pure...
A fuel gas containing 40.00 mole% methane and the balance ethane is burned completely with pure oxygen at 25.00°C, and the products are cooled to 25.00°C. A. Suppose the reactor is continuous. Take a basis of calculation of 1.000 mol/s of the fuel gas, assume some value for the percent excess oxygen fed to the reactor (the value you choose will not affect the results), and calculate -Q?(kW), the rate at which heat must be transferred from the reactor if...
Methane gas is burned completely with 30% excess air in a furnace operating at one atmosphere....
Methane gas is burned completely with 30% excess air in a furnace operating at one atmosphere. Both the methane and air enter the furnace at 40ºC saturated with water vapor. The flue gas (furnace exhaust) leaves the furnace at 1000ºC. The flue gas then passes through a heat exchanger and emerges at 60ºC. If 260 mole/sec of methane fed to the furnace, how much heat is lost from the furnace, and how much heat is transferred in the heat exchanger?...
A fuel gas containing 15.00 mole% methane and the balance ethane is burned completely with pure...
A fuel gas containing 15.00 mole% methane and the balance ethane is burned completely with pure oxygen at 25.00°C, and the products are cooled to 25.00°C. Suppose the reactor is continuous. Take a basis of calculation of 1.000 mol/s of the fuel gas, assume some value for the percent excess oxygen fed to the reactor (the value you choose will not affect the results), and calculate -Q (kW), the rate at which heat must be transferred from the reactor if...
A steam of 100mol/s ethanol(C2H5OH) vapor at 400oC and 1 atm is fed to an adiabatic...
A steam of 100mol/s ethanol(C2H5OH) vapor at 400oC and 1 atm is fed to an adiabatic reator. The ethanol is reacted to produce acetaldehyde (CH3CHO) vapor and hydrogen (H2) gas.After a conversion of 30% the products exit from the reactor at 1atm.It is given that the heat capacity of acetaldehyde,in kJ/(mol.oC) is given as below: Cp,CH3CHO=50.48X10-3+13.26x10-5T-8.049x10-8T2+23.8X10-12T3 i)Express the molar flowrate and specific enthalpy for all substances in the inlet-outlet enthalpy table. ii)Show the stoichiometric equation for the reaction in the...
Making Hydrogen Gas ​Passing steam over hot carbon produces a mixture of carbon monoxide and hydrogen:...
Making Hydrogen Gas ​Passing steam over hot carbon produces a mixture of carbon monoxide and hydrogen: H2O(g) + C(s) <=> CO(g) + H2(g) The value of Kc for the reaction at 1000°C is 3.0 × 10–2. a. Calculate the equilibrium partial pressures of the products and reactants if PH2O = 0.442 atm    and PCO = 5.0 atm at the start of the reaction. Assume that the carbon is in excess. b. Determine the equilibrium partial pressures of the reactants...
3. The water-gas reaction is used to produce combustible gases from carbon (coal) and steam. C(s)...
3. The water-gas reaction is used to produce combustible gases from carbon (coal) and steam. C(s) + H2O(g) CO(g) + H2(g) Kp = 9.7x10-17 at 298 K Ho = 131 kJ What will the effect on the final equilibrium amount of H2(g) if a gaseous mixture originally at equilibrium with a large excess of C(s) at 298 K is subjected to the following changes: (increase, decrease or no change) How can I tell can I have an reason why it...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT