Question

A system of water (1) and methane (2) exists as two phases at 298 K and...


A system of water (1) and methane (2) exists as two phases at 298 K and 23.23 atm. Rigby and Prausnitz (1968) reported the water mole fraction in the vapor phase as 1.483 × 10−3. The vapor phase is represented by the virial equation of state with the following parameters:
B11 = −1165 cm3/mol, B22 = −43.4 cm3/mol.
(a) Estimate the liquid phase composition.
(b) Determine the second virial cross coefficient, B12. The vapor pressure of
water at 298 K is 0.03126 atm.

Homework Answers

Answer #1

The ideal gas equation for ideal gases are given as :

P is the pressure and is the molar volume of gas and T is the temperature and R is the universal gas constant.

Virial equation of state is given by :

The coefficients B,C are second, third virial coefficients which are functions of temperature.

The above equation is given in simplified form for gases upto a few atmospheric pressure when temperature is not very low

;   is the ideal molar volume

So from the above equation it can be concluded that B(T) is the correction to ideal molar volume.

From vapour liquid data find the vapour pressure

x=0.000562

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The pressure in a vessel that contains only methane and water at 70oC is 10.0 atm....
The pressure in a vessel that contains only methane and water at 70oC is 10.0 atm. At the given temperature, the vapor pressure of pure water is 0.3075 atm, and the Henry’s Law constant for methane in water is 6.66 x 104 atm. (a) Using Raoult’s Law, estimate the partial pressure of water and methane in the vapor phase. You may assume that the mole fraction of water in the liquid phase is close to one. (b) Using your answer...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies of formation of the components in the gas phase are -20, -40, -30, and -10 kJ/mol for A,B,C, and D, respectively. The standard-state entropies of the components in the gas phase are 30, 50, 50, and 80 J/(mol K), in the same order. The vapor pressure of liquid C at this temperature is 0.1 bar, while all other components are volatile gases with Henry's...
Consider a mixture of methyl ethyl keytone(1) and water(2) at VLE at 1 atm pressure. If...
Consider a mixture of methyl ethyl keytone(1) and water(2) at VLE at 1 atm pressure. If the liquid phase consists of 50 mol% water, what is the composition of the vapor phase and at what temperature is the system? Answer these questions for the two cases below, and clearly state any additional assumptions. a) Assume that VLE is described by Raoult’s Law. b) Assume that VLE is described by Modified Raoult’s Law.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT