Question

In process A: Pure methanol liquid enters a heat exchanger at 25C and exits at 100C...

In process A: Pure methanol liquid enters a heat exchanger at 25C and exits at 100C as a vapor. In process B: Pure methanol vapor enters a heat exchanger at 25C and exits at 100 C as a vapor. The heat required for process A is ______ the heat required for process B.

Greater than

Less than

Equal to

Homework Answers

Answer #1

The heat required in Process A is greater than in Process B

This is because, in Process A, methanol is liquid. Thus, first it is heated to its boiling point, then we need to provide energy for vaporizing it ( Lambda - Energy to convert liquid to vapor) and then we need to further provide energy to heat the vapor.

In Process B, we just need to provide energy to vapor which is far less than that of Process A.

Latent heat is much higher than small sensible heat changes over small temperature differences.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Saturated liquid ethanol at 500 kPa enters a heat exchanger and is brought to 950oK at...
Saturated liquid ethanol at 500 kPa enters a heat exchanger and is brought to 950oK at constant pressure, after which it enters a reversible adiabatic turbine where it expands to 100 kPa. Find the heat transfer in the heat exchanger, the turbine exit temperature, and turbine work.
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Problem #1 Saturated steam at 300°C is used to heat a counter-currently flowing stream of methanol...
Problem #1 Saturated steam at 300°C is used to heat a counter-currently flowing stream of methanol vapor from 65°C to 260°C in an adiabatic heat exchanger. The flow rate of the methanol is 5500 standard liters per minute (at STP), and the steam condenses and leaves the heat exchanger as liquid water at 90°C. a) Draw a diagram of the process. b) Calculate the required flow rate of the entering steam in m3/min. c) Calculate the rate of heat transfer...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.21, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For...
saturated steam at 300 C is used to heat countercurrently flowing stream of methanol vapor from...
saturated steam at 300 C is used to heat countercurrently flowing stream of methanol vapor from 65C to 260 C in and adiabatic heat exchanger. The flow rate of the methanol is 5500 standard liters per minute, and the steam condenses and leaves the heat exchanger as liquid water at 90 C. A) calculate the required flow rate of the entering steam in m^3/min. B) Calculate the rate of heat transfer from the water to the methanol (kW).
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters...
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters the counter-flow heat exchanger at 800 kPa, 80 0C and a mass flow rate of 2 kg/s. The refrigerant exits as a saturated liquid. Cooling water enters the condenser at 500 kPa and 18 0C and leaves the condenser at 30 0C. Determine the necessary mass flow rate of water. Each fluid is assumed to flow at constant pressure.
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...
Saturated steam at 350 C is used to heat a countercurrent stream of methanol vapor from...
Saturated steam at 350 C is used to heat a countercurrent stream of methanol vapor from 70C to 300C in an adiabatic heat exchanger. The flow rate of methanol is 6000 L (STP) / min, and the steam condenses and leaves the exchanger as liquid water at 80C. a) Calculate the necessary flow of the incoming steam in m 3 / min. b) Calculate the heat flux transferred from water to methanol (kW).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT