Question

5 m3 of sulphur trioxide is initially at 150 °C and 60 bar undergo an isochoric...

5 m3 of sulphur trioxide is initially at 150 °C and 60 bar undergo an isochoric heating process to a final pressure of 70 bar. Calculated the heat transfer (kJ) for the process. (assume ideal gas)

Homework Answers

Answer #1

first calculate the final temperature obtained after the process. using ideal gas equation, PV=nRT

Here, Pi/Pf=Ti/Tf

Tf=423*(70/60)=493.5 K

Q=heat transfer= change in internal energy + work done

work done in the case of isochoric process is zero

so, heat transfer= change in internal energy = n*Cv*(Tf-Ti)

from ideal gas equation, no. of moles can be calculated. n= P*V/(RT)=8530.42 moles

Tf-Ti=493.25-423=70.25 K

Cv=0.5 kJ/Kg-K(assumed )=0.5/(80000) KJ/mol-K (use proper value from table or any correlation )

heat transfer=8530.42*0.5*70.25/80000=3.745 KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank of 0.1 m3 volume initially containing nitrogen at 25 C and 1 bar will...
A tank of 0.1 m3 volume initially containing nitrogen at 25 C and 1 bar will be filled with compressed nitrogen at a rate of 20 mol/s. The nitrogen coming from the compressor and into the tank is at an absolute pressure of 110 bar and a temperature of 80 C. The filling process occurs sufficiently rapidly that there is negligible heat transfer between the gas and the tank walls, and a valve is closed to stop the filling process...
A gas initially at 2.8 bar and 60ºC is compressed to a final pressure of 14...
A gas initially at 2.8 bar and 60ºC is compressed to a final pressure of 14 bar in an isothermal internally reversible process. Determine the work and heat transfer, each in kJ per kg of gas, if the gas is (a) Refrigerant 134a, (b) air as an ideal gas. Sketch the process on p–v and T–s coordinates
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is...
A rigid copper tank, initially containing 1 m3 of air at 295 K, 4 bar, is connected by a valve to a large supply line carrying air at 295 K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the...
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase...
Q3. A tank with rigid walls and a volume of 0.05 m3 initially has a two-phase liquid- vapor mixture of ammonia at a pressure of 4 bar and a quality of 10%. The tank is then heated such that the pressure is kept constant through a pressure-regulating valve that allows saturated vapor to escape. The heating continues until the quality of the mixture in the tank is 40%. Assume kinetic and potential energy changes are insignificant. Determine: (i) The final...
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally...
A system consisting of 2 kg of water initially at 130°C, 10 bar undergoes an internally reversible, isothermal expansion during which there is energy transfer by heat into the system of 700 kJ. Determine the final pressure, in bar, and the work by the system, in kJ.
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and...
H3.3 A frictionless piston-cylinder device contains 2 kg of H2O initially at T1 = 300◦C and p1 = 5 bar. The device is cooled at constant pressure until the volume is ∀2 = 0.5 m3 . Assume a quasiequillibrium process which occurs slowly with no acceleration as the piston moves. Kinetic and potential energy effects are negligible. Determine: a. work [kJ] during process (indicate magnitude and direction) b. heat transfer [kJ] during process (indicate magnitude and direction)
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially,...
Steam is contained in a closed rigid container with a volume of 2 m3 . Initially, the pressure and the temperature of the steam are 7 bar and 400°C, respectively. The temperature drops as a result of heat transfer to the surroundings. i. Determine the temperature at which the condensation first occurs in °C. [6 marks] ii. Evaluate the fraction of the total mass that has condensed when the pressure reaches 0.75 bar. [4 marks] iii. Calculate the volume in...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine the final temperature and the work done on the gas when 1.6 kJ of heat is added to the gas during each of these separate processes (all starting at same initial temperature and pressure: (a) isothermal (constant temperature) process, (b) isometric (constant volume) process, and (c) isobaric (constant pressure) process. Hint: You’ll need the 1st Law...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 =...
A rigid, well-insulated tank, with a volume of 0.057 m3 , contains air at p1 = 1.4 bar, T1 = 280 K. The air is stirred by a paddle wheel, resulting in an energy transfer to the gas of magnitude 6.78 kJ. Assuming ideal gas behavior for the air, determine the final temperature, in K, and the final pressure, in bar. Neglect kinetic and potential energy effects
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT