Question

1- High activation energy A)Temperature Sensitive B)Temperature insistivity C)High viscosity D)Low viscosity 2- Distillation is designed...

1- High activation energy

A)Temperature Sensitive

B)Temperature insistivity

C)High viscosity

D)Low viscosity

2- Distillation is designed for ?

A)Solubility

B)Volatility

C)Viscosity

D)Fractionation

Homework Answers

Answer #1

1) In reaction kinetics engineering it is known that reaction with high activation energy are more temperature sensitive.

Why ?

Because higher value of activation energy means larger value of energy required for the intermediate step. And providing temperature activates the molecule and bring them closer to the intermediate step.

So , Option A is the correct answer.

2 ) distillation is the process used for separating different components of a feed mixture based on their boiling points .

Fractionation means separation of a mixture into different components . therefore distillation is used for fractionation. Option D is correct answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You have a temperature sensitive mutant gene in a yeast. At restrictive (high) temperature it lead...
You have a temperature sensitive mutant gene in a yeast. At restrictive (high) temperature it lead to hyperactivity. At permissive (low) temperature it functions normally. However, at restrictive temperature the cells do complete mitosis, but are very small. Which of the following protein is likely affected by the mutation. A) Wee1kinase B) p21 C) cdc 25 phosphatase D) cdc 20
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
Multiple choice: When do quantum effects become important? a) at low density and high temperature b)...
Multiple choice: When do quantum effects become important? a) at low density and high temperature b) at low density and low temperature c) at high density and high temperature d) at high density and low temperature Please explain. It's for a statistical mechanics class
1.a)The activation energy of a certain reaction is 46.3 kJ/mol . At 30 ∘C , the...
1.a)The activation energy of a certain reaction is 46.3 kJ/mol . At 30 ∘C , the rate constant is 0.0180s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b) Given that the initial rate constant is 0.0180s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 140 C for the same reaction described in Part A?
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal...
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal mol–1) at 298 K. Reaction B is ten million times faster than reaction A at the same temperature. The products of each reaction are 10.0 kJ mol–1 (2.39 kcal mol–1) more stable than the reactants. (a) What is the standard free energy of activation of reaction B? (b) What is the standard free energy of activation of the reverse of reaction A? (c) What...
Construct a Carnot PV-cycle for an ideal gas with high temperature Thigh and low temperature Tlow....
Construct a Carnot PV-cycle for an ideal gas with high temperature Thigh and low temperature Tlow. Remember that the top and bottom legs are isotherms (constant temperature), so PV=NkT for the start and endpoints of those legs. The side legs must satisfy the condition that Delta(Q)=0. For your cycle, estimate 1) the work done for each step (it will be helpful to have a piece of graph paper), 2) the change in internal (heat) energy, 3) the total sum of...
A)The activation energy of a certain reaction is 33.8 kJ/mol . At 30  ∘C , the rate...
A)The activation energy of a certain reaction is 33.8 kJ/mol . At 30  ∘C , the rate constant is 0.0170s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B)Given that the initial rate constant is 0.0170s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 200. ∘C for the same reaction described in Part A?
Part A: The activation energy of a certain reaction is 43.5 kJ/mol . At 23 ∘C...
Part A: The activation energy of a certain reaction is 43.5 kJ/mol . At 23 ∘C , the rate constant is 0.0180s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Part B: Given that the initial rate constant is 0.0180s−1 at an initial temperature of 23 ∘C , what would the rate constant be at a temperature of 190. ∘C for the same reaction described in Part A?
Part A: The activation energy of a certain reaction is 42.3 kJ/mol . At 29 ∘C...
Part A: The activation energy of a certain reaction is 42.3 kJ/mol . At 29 ∘C , the rate constant is 0.0170s−1 . At what temperature in degrees Celsius would this reaction go twice as fast? Part B: Given that the initial rate constant is 0.0170s−1 at an initial temperature of 29 ∘C , what would the rate constant be at a temperature of 120. ∘C for the same reaction described in Part A?
Part A: The activation energy of a certain reaction is 42.8 kJ/mol . At 28 ∘C...
Part A: The activation energy of a certain reaction is 42.8 kJ/mol . At 28 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Part B: Given that the initial rate constant is 0.0190s−1 at an initial temperature of 28  ∘C , what would the rate constant be at a temperature of 150  ∘C for the same reaction described in Part A?