Question

Propane gas at 100 c is compressed isothermally from an initial pressure of 1 bar to...

Propane gas at 100 c is compressed isothermally from an initial pressure of 1 bar to a final pressure of 5 bar.

a. Determine the Delta H of the process

b. Determine the Delta S of the process

c. Comment on the differences between a closed and an open system undergoing this change in terms of Q,W,H and S.

Homework Answers

Answer #1

a) Delta H = delta U +Delta (PV)

delta U = o for isothermal process, for ideal gas Delta (PV) = 0 9assuming propane as ideal gas)

Work done in isothermal process = RT ln(P1/P2) = 8.314*(273+100)*ln(1/5) = -4991.1 J/mol

Q = Delta U +W = 0 -4991.1 = -4991.1 J/mol

B) Delta S = -DeltaQ/T = 4991.1/373 = 13.38 J/mol.k

C) closed system can exchange only energy with surrounding however open syatem can change mass as well as energy with system

This is basically a closed system because Q is negative and entropy of the sytem is increasing and work is delivered by ststem to surrounding..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1 mole of a non-ideal gas is compressed isothermally at 100°C from 1 bar to 50...
1 mole of a non-ideal gas is compressed isothermally at 100°C from 1 bar to 50 bar. What are the heat and work needed for this (reversible) compression if the gas conforms to the principle of corresponding states? The critical properties of the non-ideal gas are Tc = 406 K and Pc = 11.3 MPa.
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to...
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to 1bar at 50oC. Estimate the ENTROPY change (?S) for the gas using Lee/Kesler generalized correlation tables
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar at 298.15K. (i)Calculate the values of w, q, ∆U and ∆H? (ii)Calculate w if the gas were to have expanded to the same final state against a constant pressure of 1 bar.
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of...
One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of 10.0 L to a final volume of 20.0 L at a pressure equal to the final pressure and a temperature of 500 K. Calculate the value of w. Calculate the values of q. Calculate the value of ΔS (system). Calculate the values of delta S (surroundings). Calculate the values of ΔS (total).
Consider an ideal gas that occupies 100 dm3 at a pressure of 3.00 bar. If the...
Consider an ideal gas that occupies 100 dm3 at a pressure of 3.00 bar. If the gas is compressed isothermally to a volume of 60 dm3 at a constant pressure of 5.00 bar followed by followed by another isothermal compression to 40 dm3 at a constant pressure of 7.50 bar (Figure 5.4). Compare the result with the work of compressing the gas isothermally and reversibly from 100 dm3 to 40 dm3 . Compare both results to the one obtained in...
A gas initially at 2.8 bar and 60ºC is compressed to a final pressure of 14...
A gas initially at 2.8 bar and 60ºC is compressed to a final pressure of 14 bar in an isothermal internally reversible process. Determine the work and heat transfer, each in kJ per kg of gas, if the gas is (a) Refrigerant 134a, (b) air as an ideal gas. Sketch the process on p–v and T–s coordinates
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
12 moles of a gas is compressed isothermally and reversibly from 400 K , 1 bar...
12 moles of a gas is compressed isothermally and reversibly from 400 K , 1 bar to 1/2th of its original volume. Initial volume of the gas was measured at 120 cm^3. Using the truncated virial EOS, calculate the required work for the compression.
An ideal gas is compressed isothermally in a closed and frictionless piston/cylinder apparatus to 2.5 times...
An ideal gas is compressed isothermally in a closed and frictionless piston/cylinder apparatus to 2.5 times its initial pressure, consuming in the process 2.2 kJ mol−1 of work. Calculate the temperature of the gas inside the cylinder.
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.