Question

The vapor pressures of benzene and methylbenzene at 20°C are 75 Torr and 21 Torr, respectively....

The vapor pressures of benzene and methylbenzene at 20°C are 75 Torr and 21 Torr, respectively. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of benzene is 0.75?

Homework Answers

Answer #1

total Pressure = sum of partial pressures

Partial vapor pressure =mol fraction x Pure vapor pressure

hence, partial Pressure of benzene = 0.75 x 75 = 56.25 torr ( mole fraction of benzene is 0.75, given)

Now, mole fraction of methylbenzene in mixture = 1 - 0.75 = 0.25

therefore,

Partial Pressure of of methylbenzene= 0.25 x 21 = 5.25

total Pressure = 56.25 + 5.25 = 61.5 torr

now in vapor state mol fraction of benzene = partial P of benzene / total vapor presure

= 56.25 / 61.5 = 0.915

methylbenzene mol fraction in vapor = 1-0.915 = 0.085

hey, if you find any problem please ask and please give thumbs up. thhanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 20 ∘C the vapor pressure of benzene C6H6 is 75 torr and that of toluene...
At 20 ∘C the vapor pressure of benzene C6H6 is 75 torr and that of toluene C7H8 is 22 torr. Assume that benzene and toluene form an ideal solution. a) In a solution composed of benzene and toluene that has a vapor pressure of 37 torr at 20 ∘C, what is the mole fraction of benzene? b) In a solution composed of benzene and toluene that has a vapor pressure of 37 torr at 20 ∘C, what is the mole...
At 20 ∘C the vapor pressure of benzene (C6H6) is 75 torr, and that of toluene...
At 20 ∘C the vapor pressure of benzene (C6H6) is 75 torr, and that of toluene (C7H8) is 22 torr. Assume that benzene and toluene form an ideal solution. What is the mole fraction of benzene in the vapor above the solution described in part (a)? 39 torr at 25 C
The vapor pressures of benzene (C6H6) and hexane (C6H14) at 75°C are 648 mm Hg and...
The vapor pressures of benzene (C6H6) and hexane (C6H14) at 75°C are 648 mm Hg and 921 mm Hg, respectively. (a) If 330.0 g benzene is mixed with 730.0 g hexane at 75°C, what are the mole fractions of benzene and hexane in this solution? mole fraction of benzene mole fraction of hexane ? (b) Assuming this is an ideal system that obeys Raoult's law, find the partial vapor pressure of each component over the solution. vapor pressure of benzene...
A solution of benzene (C6H6) and toluene (C7H8) is 27.0 % benzene by mass. The vapor...
A solution of benzene (C6H6) and toluene (C7H8) is 27.0 % benzene by mass. The vapor pressures of pure benzene and pure toluene at 25 ∘C are 94.2 torr and 28.4 torr, respectively. Assuming ideal behavior, calculate the following. Calculate A) The vapor pressure of each of the solution components in the mixture. B) The composition of the vapor in mass percent.
A solution of benzene (C6H6) and toluene (C7H8) is 25.0 % benzene by mass. The vapor...
A solution of benzene (C6H6) and toluene (C7H8) is 25.0 % benzene by mass. The vapor pressures of pure benzene and pure toluene at 25∘C are 94.2 and 28.4 torr, respectively. A)Assuming ideal behavior, calculate the vapor pressure of benzene in the mixture. B)Assuming ideal behavior, calculate the vapor pressure of toluene in the mixture.
What is the total vapor pressure at 20°C of a liquid solution containing 0.29 mole fraction...
What is the total vapor pressure at 20°C of a liquid solution containing 0.29 mole fraction benzene, C6H6, and 0.71 mole fraction toluene, C6H5CH3? Assume that Raoult’s law holds for each component of the solution. The vapor pressure of pure benzene at 20°C is 75 mmHg; that of toluene at 20°C is 22 mmHg
A mixture of Mol-100 kmol containing 70% benzene and 30% toluene must be separated at a...
A mixture of Mol-100 kmol containing 70% benzene and 30% toluene must be separated at a total pressure of 101.325 KPA (1 atm). A differential distillation column and an equilibrium(flash) distillation column are available in the enterprise to perform this operation. If 45 kmol distillate (top product) is obtained; a -) the composition of the distillate and remaining liquid obtained by differential distillation, B -) determine the composition of distillate and liquid obtained from equilibrium distillation. What distillation process would...
1. The following are the vapor pressures of some relatively common chemicals measured at 20 °C:...
1. The following are the vapor pressures of some relatively common chemicals measured at 20 °C: Benzene, C6H6 80 torr Acetic acid, HC2H3O2 11.7 torr Acetone, C3H6O 184.8 torr Water, H2O 17.5 torr Diethyl ether, C4H10O 442.2 torr Arrange these substances in order of increasing boiling point. 2. At 0.00 °C, hexane, C6H14, has a vapor pressure of 45.37 mm Hg. Its ΔHvap is 30.1 kJ mol-1. What is the vapor pressure of hexane at 12.9 °C? The vapor pressure...
A solution contains 49.0 g of heptane (C7H16)and 59.0 g of octane (C8H18) at 25 ∘C....
A solution contains 49.0 g of heptane (C7H16)and 59.0 g of octane (C8H18) at 25 ∘C. The vapor pressures of pure heptane and pure octane at 25 ∘C are 45.8 torr and 10.9 torr, respectively. Assuming ideal behavior, calculate each of the following. (Note that the mole fraction of an individual gas component in an ideal gas mixture can be expressed in terms of the component's partial pressure.) A) The vapor pressure of heptane in the mixture B) The Vapor...
The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at...
The vapor pressures of pure acetone and methanol are 165 kPa and 73.5 kPa, respectively, at 57.2oC. However, it was found that at equilibrium at 57.2oC and 1 atm that xA=0.400 and yA=0.516, which are the liquid and vapor phase mole fractions of acetone, respectively. Using Raoult’s Law, calculate the activities and activity coefficients of each component.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT