Question

In producing ammonia by the Haber process. A 3:1 hydrogen-nitrogen molar ratio is feed to the...

In producing ammonia by the Haber process. A 3:1 hydrogen-nitrogen molar ratio is feed to the ammonia unit. The fresh feed contains 0.31 mol argon per 100 mol hydrogen-nitrogen mixture. It has been determined that the concentration of argon in the reactor must be no greater than 4 mol argon per 100 mil hydrogen-nitrogen mixture. A 20 % conversion of reactants to ammonia is obtained per pass and all of the ammonia produced are removed in the absorber. Calculate:

a) the amount of purged stream

b) the amount of ammonia produced

c) the amount of the recycle stream

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by...
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by mole) and stoichiometric proportion of the reactants (N2 and H2) is fed into the system at the rate of 100 mol/min. The components enter a reactor, and then all ammonia is separated from the other components and leaves the process. The other components are recycled back to the feed stream, with a portion being purged from the system. The mole percentage of argon in...
Methanol is synthesized from carbon monoxide and hydrogen in a catalytic reactor. The fresh feed to...
Methanol is synthesized from carbon monoxide and hydrogen in a catalytic reactor. The fresh feed to the process contains 32.0 mol% CO, 64.0 mol% H2 and 4.00 mol% N2. This stream is mixed with a recycle stream in a ratio of 4.00 mol recycle / 1 mol fresh feed to produce the feed to the reactor, which contains 14.0 mol% N2. The reactor effluent goes to a condenser from which two streams emerge: a liquid product stream containing essentially all...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react to form ammonia (NH3). The reactor is operated to achieve a fractional nitrogen conversion of 0.25. The exit stream from the reactor is fed to a separator, which separates unreacted nitrogen and hydrogen from the ammonia. (e) Assuming a basis of 100 tonne/day of ammonia production, determine the molar flow rates (moles/day) and the compositions (expressed in mole fractions) of all process streams. [40%]...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react to form ammonia (NH3). The reactor is operated to achieve a fractional nitrogen conversion of 0.25. The exit stream from the reactor is fed to a separator, which separates unreacted nitrogen and hydrogen from the ammonia. (a) Draw and label a PFD for the process described above. [10%] (b) Write down a balanced stoichiometric equation for the reaction. [5%] (c) If the feed is...
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts...
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts some the ethanol to diethyl ether (DEE). In one process, a fresh feed containing ethylene, non-condensable inerts, and water are mixed with a recycle stream. The combined stream is fed to the reactor and it contains 182 mol/min of ethylene. While the fresh feed contains 9 moles of ethylene per mole of inerts, after mixing with recycle stream, the mole ratio of inerts to...
One process for the production of methanol is the catalytic reaction of carbon dioxide and hydrogen....
One process for the production of methanol is the catalytic reaction of carbon dioxide and hydrogen. The chemical reaction is given by: CO2  3H2  CH3OH  H2O It is desired to produce 1000 mol/hr of methanol. The single pass conversion of the reactor is 10% while the overall conversion is 80% (both in terms of hydrogen). Note, carbon dioxide in the fresh feed is in 20% excess and all of the product (methanol) and the byproduct (water) is...
In the Haber process, ammonia is manufactured by the reaction of nitrogen and hydrogen. Suppose 68.5...
In the Haber process, ammonia is manufactured by the reaction of nitrogen and hydrogen. Suppose 68.5 kg of gaseous nitrogen is reacted with 5.60 kg of gaseous hydrogen and 27.6 kg NH3 is produced. Which choice is closest to the percent yield of the reaction? -58.1% -66.0% -33.0% -87.7%
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
Acetaldehyde is synthesized by the catalytic dehydrogenization of ethanol: C2H5OH ? CH3CHO + H2 Fresh feed...
Acetaldehyde is synthesized by the catalytic dehydrogenization of ethanol: C2H5OH ? CH3CHO + H2 Fresh feed (pure ethanol) is blended with a recycle stream (95 mole% ethanol and 5% acetaldehyde), and the combined stream is heated and vaporized, entering the reactor at 280?C. Gases leaving the reactor are cooled to -40?C to condense the acetaldehyde and un-reacted ethanol. Off-gas from the condenser is sent to a scrubber, where the uncondensed organic compounds are removed and hydrogen is recovered as a...
Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction...
Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction is N2(g)+3H2(g) ---> 2NH3 (g) (a) Use bond enthalpies to estimate the enthalpy change for the reaction, and tell whether this reaction is exothermic or endothermic (b) Compare the enthalpy change you calculate in (a) to the true enthalpy change as obtained using ∆Hf° values. (∆Hf° of ammonia is -46.19 kJ/mol)