Question

The next three (3) problems deal with the titration of 301 mL of 0.501 M carbonic...

The next three (3) problems deal with the titration of 301 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 1.5 M KOH.

How many mL of the 1.5 M KOH are needed to raise the pH of the carbonic acid solution to a pH of 6.635?

Homework Answers

Answer #1

The balanced reaction

H2CO3 + NaOH ? NaHCO3 + H2O

NaHCO3 + NaOH ? Na2CO3 + H2O

From the Henderson-Hasselbalch equation:

pH = pKa + log [HCO3-]/[H2CO3]

Ka1 = 4.3 x 10^-7

pKa = - log (4.3 x 10^-7) = 6.366

6.635 = 6.366 + log [HCO3-]/[H2CO3]

[HCO3-]/[H2CO3] = 1.858 ......... Eq1

Given that

[HCO3-] + [H2CO3] = 0.501 M

From Eq 1

1.858 x [H2CO3] + [H2CO3] = 0.501

2.858 x [H2CO3] = 0.501

[H2CO3] = 0.175 M

Again from Eq 1

[HCO3-] = 1.858 x 0.175 = 0.326 M

Moles of HCO3- = molarity x volume

= 0.326 Mol/L x 0.301 L

= 0.098126 mol

From the stoichiometry of the reaction

1 mol HCO3- produced from = 1 mol NaOH

Moles of NaOH = 0.098126 mol

Volume of NaOH = moles/molarity

= 0.098126 mol / 1.5 mol/L

= 0.0654 L x 1000mL/L

= 65.40 mL

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The next three (3) problems deal with the titration of 301 mL of 0.501 M carbonic...
The next three (3) problems deal with the titration of 301 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 1.3 M KOH. How many mL of the 1.3 M KOH are needed to raise the pH of the carbonic acid solution to a pH of 6.635? Could someone show their work for this. I've been trying to solve this for the last hour, but I can't seem to get the...
The next three (3) problems deal with the titration of 411 mL of 0.501 M carbonic...
The next three (3) problems deal with the titration of 411 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 2.1 M KOH. All answers to three significant digits. What is the pH of the solution at the 2nd equivalence point? What will the pH of the solution be when 0.1677 L of 2.1 M KOH are added to the 411 mL of 0.501 M carbonic acid? How many mL of...
The next three (3) problems deal with the titration of 381 mL of 0.501 M carbonic...
The next three (3) problems deal with the titration of 381 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 1.7 M NaOH. What is the pH of the solution at the 2nd equivalence point? What will the pH of the solution be when 0.1381 L of 1.7 M NaOH are added to the 381 mL of 0.501 M carbonic acid? How many mL of the 1.7 M NaOH are needed...
The next three (3) problems deal with the titration of 371 mL of 0.501 M carbonic...
The next three (3) problems deal with the titration of 371 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 1.9 M NaOH. 1)What is the pH of the solution at the 2nd equivalence point? 2)What will the pH of the solution be when 0.1282 L of 1.9 M NaOH are added to the 371 mL of 0.501 M carbonic acid? 3) How many mL of the 1.9 M NaOH are...
The titration of 321 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7,...
The titration of 321 mL of 0.501 M carbonic acid (H2CO3) (Ka1 = 4.3 x 10-7, Ka2 = 5.6 x 10-11) with 1.5 M KOH. How many mL of the 1.5 M KOH are needed to raise the pH of the carbonic acid solution to a pH of 6.755? I tried many times, but I just dont get the answers right. How do I do this?
Determine the [H3O+] and the pH of a 0.250 solution of Carbonic acid; Ka1 = 4.3...
Determine the [H3O+] and the pH of a 0.250 solution of Carbonic acid; Ka1 = 4.3 x 10-7; Ka2 = 5.6 x 10-11
1. What is the pH of a 1.05M solution of carbonic acid? Ka1 = 4.3 x...
1. What is the pH of a 1.05M solution of carbonic acid? Ka1 = 4.3 x 10-7 Ka2 = 5.6 x 10-11 2. A diprotic acid, H2A has the following Kas: Ka1 = 3.94 x 10-7 and Ka2 = 8.78 x 10-11. What is the Kb of HA-? 3.A diprotic acid, H2A has the following Kas: Ka1 = 3.94 x 10-7 and Ka2 = 8.78 x 10-11. What is the Kb of HA-?
Henry's law constant for CO2 at 38oC is 2.28 x 10–3 mol/L\cdot⋅atm. Calculate the pH of...
Henry's law constant for CO2 at 38oC is 2.28 x 10–3 mol/L\cdot⋅atm. Calculate the pH of a solution of CO2 at 38oC in equilibrium with the gas at a partial pressure of 3.20 atm. Assume that all dissolved CO2 is in the form of carbonic acid (H2CO3). Ka1 = 4.3 x 10–7 and Ka2 = 5.6 x 10–11 for carbonic acid.
What is the percent ionization of carbonic in 0.1441 M carbonic acid solution, H2CO3? H2CO3(aq) +...
What is the percent ionization of carbonic in 0.1441 M carbonic acid solution, H2CO3? H2CO3(aq) + H2O(l) « HCO3−(aq) + H3O+(aq) Ka1 = 4.3000e-7 HCO3−(aq) + H2O(l) « CO32−(aq) + H3O+(aq) Ka2 = 5.6000e-11
The pH of blood serum is maintained by a proper balance of H2CO3 and NaHCO3 concentrations....
The pH of blood serum is maintained by a proper balance of H2CO3 and NaHCO3 concentrations. Calculate the volume of 5M NaHCO3 solution that should be mixed with a 10 mL of sample of blood which is 2M in H2CO3 in order to maintain a pH of 7.4 . Given Ka1 and Ka2 for H2CO3 in blood are 4.3 x 10-7 and 5.6 x 10-11 .