Question

When 27.7 mL of 0.500 M H2SO4 is added to 27.7 mL of 1.00 M KOH...

When 27.7 mL of 0.500 M H2SO4 is added to 27.7 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate ?H of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g·°C.)

Homework Answers

Answer #1

Total volume of solution = 27.7 + 27.7 = 55.4 mL

Density of solution = 1g/mL

Mass of solution = volume x density

= 55.4 mL x 1g/mL

= 55.4 g

Specific heat capacity Cp = 4.184 J/g·°C

The given reaction is exothermic because the temperature rises from 23.5 c to 30.17 c

?H = - m x Cp x (T2-T1)

= - 55.4 g x 4.184 J/g·°C x (30.17 - 23.50)C

= - 1546.06 J

Negative sign shows that the heat is released

The balanced reaction

H2SO4 + 2KOH = K2SO4 + 2H2O

Moles of H2SO4 = molarity x volume

= 0.5 mol/L x 0.0277 L = 0.01385 mol

Moles of KOH = 1 mol/L x 0.0277 L = = 0.0277 mol

From the stoichiometry of the reaction

1 mol H2SO4 required = 2 mol KOH

0.01385 Mol H2SO4 required = 2*0.01385 = 0.0277 mol KOH

All moles will be consumed

Moles of H2O produced = 0.0277 mol

H = - (1546.06 J x 1kJ/1000 J) / 0.0277 mol H2O

= - 55.814 kJ/mol H2O

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When 26.6 mL of 0.500 M H2SO4 is added to 26.6 mL of 1.00 M KOH...
When 26.6 mL of 0.500 M H2SO4 is added to 26.6 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50 ° C, the temperature rises to 30.17 ° C. Calculate Δ H of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g ·...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g·°C.) ?: kJ/mol H2O
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH...
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50° C, the temperature rises to 30.17° C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g°C). Answer in kJ/molH2O
When 30.5 mL of 0.515 M H2SO4 is added to 30.5 mL of 1.03 M KOH...
When 30.5 mL of 0.515 M H2SO4 is added to 30.5 mL of 1.03 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate H of this reaction per mole of H2SO4 and KOH reacted. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water: d = 1.00 g/mL and c = 4.184 J/g×K.)
Enter your answer in the provided box. When 22.9 mL of 0.500 M H2SO4 is added...
Enter your answer in the provided box. When 22.9 mL of 0.500 M H2SO4 is added to 22.9 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17 °C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water =...
In a constant-pressure calorimeter, 60.0 mL of 0.760 M H2SO4 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.760 M H2SO4 was added to 60.0 mL of 0.500 M NaOH. The reaction caused the temperature of the solution to rise from 23.05 °C to 26.46 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes. I am stuck on...
50.0 mL of 0.100 M KOH, at 20.00o C, is added to 50.00 mL of 0.110...
50.0 mL of 0.100 M KOH, at 20.00o C, is added to 50.00 mL of 0.110 M HCl, at 20.00o C, in a coffee cup calorimeter. The enthalpy of neutralization is 56.0 kJ/mol. The specific heat capacity of the total solution is 4.184 Jg-1 oC-1, and the density of the total solution is 1.00 g/mL, what is Tf for the reaction?
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of...
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of 0.290 M NaOH. The reaction caused the temperature of the solution to rise from 21.88 °C to 23.86 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of 0.260 M NaOH. The reaction caused the temperature of the solution to rise from 21.91 °C to 23.68 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of...
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of 0.480 M NaOH. The reaction caused the temperature of the solution to rise from 24.47 °C to 27.74 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT