Determine the carburizing time (in s) necessary to achieve a carbon concentration of 0.44 wt% at a position 1.6 mm into an iron-carbon alloy that initially contains 0.031 wt% C. The surface concentration is to be maintained at 1.2 wt% C, and the treatment is to be conducted at 1180°C. Assume that D0 = 5.1 x 10-5 m2/s and Qd =154 kJ/mol. You will find the table below useful.
z |
erf(z) |
z |
erf(z) |
z |
erf(z) |
0 |
0 |
0.55 |
0.5633 |
1.3 |
0.9340 |
0.025 |
0.0282 |
0.60 |
0.6039 |
1.4 |
0.9523 |
0.05 |
0.0564 |
0.65 |
0.6420 |
1.5 |
0.9661 |
0.10 |
0.1125 |
0.70 |
0.6778 |
1.6 |
0.9763 |
0.15 |
0.1680 |
0.75 |
0.7112 |
1.7 |
0.9838 |
0.20 |
0.2227 |
0.80 |
0.7421 |
1.8 |
0.9891 |
0.25 |
0.2763 |
0.85 |
0.7707 |
1.9 |
0.9928 |
0.30 |
0.3286 |
0.90 |
0.7970 |
2.0 |
0.9953 |
0.35 |
0.3794 |
0.95 |
0.8209 |
2.2 |
0.9981 |
0.40 |
0.4284 |
1.0 |
0.8427 |
2.4 |
0.9993 |
0.45 |
0.4755 |
1.1 |
0.8802 |
2.6 |
0.9998 |
0.50 |
0.5205 |
1.2 |
0.9103 |
2.8 |
0.9999 |
At unsteady state
Ficks second law of diffusion
(Cx - Co)/(Cs - Co) = 1 - erf (x/2 )
At x = 1.6 mm = 1.6*10^-3 m , Cx = 0.44
Initial concentration Co = 0.031
surface concentration Cs = 1.2
(Cx - Co)/(Cs - Co) = (0.44 - 0.031)/(1.2 - 0.031) = 0.34987
1 - erf (x/2 ) = 0.34987
erf (x/2 ) = 0.6501
From linear interpolation
(z - 0.65)/(0.70 - 0.65) = (0.6501 - 0.6420)/(0.6778 - 0.6420)
z = 0.6613
(x/2 ) = 0.6613
Now calculate the diffusion coefficient at 1180 C (1453 K)
D = D0 exp (-Qd/RT)
= 5.1 x 10^-5 m2/s exp (-154000 J/mol / 8.314 J/mol·K x 1453K)
= 1.483 x 10^-10 m2/s
[1.6*10^-3/2(1.483 x 10^-10 t)] = 0.6613
?(1.483 x 10^-10 t) = 0.0012097
1.483 x 10^-10 t = 1.463 x 10^-6
t = 9868.28 s x 1h/3600s = 2.74 hr
Get Answers For Free
Most questions answered within 1 hours.