Question

Saturated steam at 1 atm and 100°C is continuously generated from liquid water at 1 atm...

Saturated steam at 1 atm and 100°C is continuously generated from liquid water at 1 atm and 25°C by thermal contact with hot air in a counterflow heat exchanger. The air flows steadily at 1 atm. Determine values for m.m.  (steam)/ n.n.  (air) for the following cases.

Consider that air enters the exchanger at 1000°C and exits at 35°C.

The value for ??  m. (steam)/?? n. (air) is

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An adiabatic counterflow heat exchanger receives 0.3 m3/s of saturated steam vapor at 200 kPa and...
An adiabatic counterflow heat exchanger receives 0.3 m3/s of saturated steam vapor at 200 kPa and condenses it to a saturated liquid on the shell side.   Water enters the tubes at 25 C and leaves at 40 C.   Determine the second law efficiency for the heat exchanger.
Saturated steam at 200 C, 1000 kg/h is used to boil toluene in a heat exchanger....
Saturated steam at 200 C, 1000 kg/h is used to boil toluene in a heat exchanger. The toluene enters at 50 C, 1 bar, 3500 kg/h and leaves as vapor at 1 bar. The steam condensate leaving is saturated water at 200 C. Calculate the exit toluene temperature.
A heat exchanger uses saturated steam at 375 K to heat cold water entering at 280...
A heat exchanger uses saturated steam at 375 K to heat cold water entering at 280 K and leaving at 301 K. Only the latent heat of vaporization is removed from the steam, i.e. the steam is condensed and saturated water exits the exchanger. (a) What is the LMTD for a counter-current heat exchanger? (b) What is it for a parallel heat exchanger (c) If the counter-crrent heat exchanger has a duty(Q) of 81000 kJ/hour and an overall heat transfer...
Saturated steam at 350 C is used to heat a countercurrent stream of methanol vapor from...
Saturated steam at 350 C is used to heat a countercurrent stream of methanol vapor from 70C to 300C in an adiabatic heat exchanger. The flow rate of methanol is 6000 L (STP) / min, and the steam condenses and leaves the exchanger as liquid water at 80C. a) Calculate the necessary flow of the incoming steam in m 3 / min. b) Calculate the heat flux transferred from water to methanol (kW).
saturated steam at 300 C is used to heat countercurrently flowing stream of methanol vapor from...
saturated steam at 300 C is used to heat countercurrently flowing stream of methanol vapor from 65C to 260 C in and adiabatic heat exchanger. The flow rate of the methanol is 5500 standard liters per minute, and the steam condenses and leaves the heat exchanger as liquid water at 90 C. A) calculate the required flow rate of the entering steam in m^3/min. B) Calculate the rate of heat transfer from the water to the methanol (kW).
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
Problem #1 Saturated steam at 300°C is used to heat a counter-currently flowing stream of methanol...
Problem #1 Saturated steam at 300°C is used to heat a counter-currently flowing stream of methanol vapor from 65°C to 260°C in an adiabatic heat exchanger. The flow rate of the methanol is 5500 standard liters per minute (at STP), and the steam condenses and leaves the heat exchanger as liquid water at 90°C. a) Draw a diagram of the process. b) Calculate the required flow rate of the entering steam in m3/min. c) Calculate the rate of heat transfer...
Two products enter an indirect contact heat exchanger that uses steam for heating. The first product...
Two products enter an indirect contact heat exchanger that uses steam for heating. The first product which contains 15% solids enters at the rate of 3 kg/hr and at 10 °C. The second stream which contains 20% solids enters at the rate of 4 kg/hr and at 20 °C. Saturated steam at 140 °C enters the heat exchanger at 0.5 kg/hr with a quality of 95% and exits at 10% quality at 140 °C. The resulting mixture enters an indirect...
Steady state water enters y 220ºF into a heat exchanger, leaves it at y 320ºF. The...
Steady state water enters y 220ºF into a heat exchanger, leaves it at y 320ºF. The steam that leaves the exchanger is fed to a turbine from which it comes out with a quality of 90% and 1 psia. The exchanger uses air that enters 360ºF and 1 atm with a volumetric flow of 3000 ft3 / min, and exits at 280ºF at the same pressure. Determine the power in the turbine (Btu / min).
An industrial facility needs a flow of 100 gpm of hot water at 180°F, 50 psia....
An industrial facility needs a flow of 100 gpm of hot water at 180°F, 50 psia. Two designs are being considered to make the hot water. In Design 1, the hot water is produced by injecting steam into an insulated mixing chamber through which the water passes. The water enters the chamber at 50°F, 50 psia. Steam is injected into the chamber at 325°F, 50 psia. The hot water leaves at the required flow rate and temperature. For this system...