Question

A packed bed is composed of cylinders having a diameter D = 0.02 m and a...

A packed bed is composed of cylinders having a diameter D = 0.02 m and a length h = 0.5. The bulk density of the overall packed bed is 962 kg/m3 and the density of the solid cylinders is 1600 kg/m3.

a)Calculate the void fraction, ?.

b)Calculate the effective diameter Dp of the particles.

c)Calculate the value of a.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
silica sand particles of spherical shape have a density of 2650 kg/m^3 and voidage 43 percentage...
silica sand particles of spherical shape have a density of 2650 kg/m^3 and voidage 43 percentage when rest in a packed bed column of diameter D=10 mm. the total mass of particles is 1 kg.the bed is to be fludised by a flowing non reacting gas moving upwards through the bed of solids. i) what is the bulk density of the solid particle? 4 marks ii)calculate the static bed height (H) by the solid particles when rest in the cylindrical...
A solution of density 1100 kgm^-3 and viscosity 2×10^-3 Pa s is flowing under gravity at...
A solution of density 1100 kgm^-3 and viscosity 2×10^-3 Pa s is flowing under gravity at a rate of 0.24 kg/s through a bed of catalyst particles. The bed diameter is 0.2 m and the depth is 0.5 m. The particles are cylindrical, with a diameter of 1mm and length of 2 mm. They are loosely packed to give a voidage of 0.3. Calculate the depth of liquid above the top of the bed.
A packed bed reactor has the reaction A --> B occurring. The rate law is –rA...
A packed bed reactor has the reaction A --> B occurring. The rate law is –rA = kCA where k = 15 L/g-min. The superficial gas velocity is 4.8 kg/m2-s with a density of 0.45 kg/m3 and a viscosity of 3.9x10-5 kg/m-s. The porosity, catalyst density, and particle diameter are, respectively, 0.45, 2.2 g/cm3 and 0.255 cm. The cross sectional area of the reactor is 12 cm2. The inlet pressure is 100 kPa. Calculate the conversion ‘X’ when the catalyst...
A cylindrical fluidized bed of diameter 0.5 m is used in flour mill for flour production....
A cylindrical fluidized bed of diameter 0.5 m is used in flour mill for flour production. Air of density 1.2 kg/m3 and viscosity 1.84 x 10-5 Pa.s is fluidizing the flour powder of mean sieve size 60 µm and particle density 1800 kg/m3 . 240 kg of flour powder is charged to the bed and air flowrate to the bed is 140 m3 /hr. The average bed voidage at incipient fluidization is 0.45. Compute the following problems: (a) the minimum...
WOODEN CYLINDER VALUES mass (kg) 0.0354 weight (N) 0.34692 length (m) 0.290 diameter (m) 0.0163 volume...
WOODEN CYLINDER VALUES mass (kg) 0.0354 weight (N) 0.34692 length (m) 0.290 diameter (m) 0.0163 volume (m3) 0.0002086 density (kg/m3) 169.7 WATER VALUES density (kg/m3) 1000 Vi (m3) 180 ml V (m3) 213 ml ?V (m3) 33 ml weight of displaced water (N) 0.3234 BRASS CYLINDER VALUES weight (N) 2.002 length (m) 0.0605 diameter (m) 0.0192 radius (m) 0.0095 volume (m3) 0.00001751 WA (N) 1.765 ALUMINUM CYLINDER VALUES weight (N) 0.621 length (m) 0.0605 diameter (m) 0.0192 radius (m) 0.0096...
column 0.6 m diameter and 6 m high is packed with 25 mm ceramic Raschig rings...
column 0.6 m diameter and 6 m high is packed with 25 mm ceramic Raschig rings and used in a gas absorption process carried out at 101 KPa and 300 K. If the liquid and gas properties approximate to those of water and air (water viscosity=1 mNs/m2, air viscosity=0.02 mNs/m2) and their flowrates are 2.4 and 0.95 kg/m2s respectively. The packing properties are the following: voidage (e) is 0.71, specific surface area (S) is 190 m2/m3. Calculate the wet pressure...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of...
A grey body is one whose absorptivity 1. does not vary with temperature and wavelength of the incident ray 2. is equal to its emissivity 3. varies with temperature 4. varies with wavelength of the incident ray A liquid is in equilibrium with its vapor at its boiling point. On an average, the molecules in the liquid and gaseous phases have equal 1. potential energy. 2. kinetic energy. 3.temperature. 4. intermolecular forces of attraction. A liquid of density 1000 kg/m3...