Question

2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and...

2.1Consider a solid cylindrical rod of length 0.15 m and diameter 0.05 m. The top and bottom surfaces of the rod are maintained at constant temperatures of 20oC and 95oC, respectively, while the side surface is perfectly insulated. 2.1.1 Draw a diagram to represent the situation described above. (3) 2.1.2 Determine the rate of heat transfer through the rod if it is made of copper, k = 380 W/m? oC. (4) 2.1.3 Determine the rate of heat transfer through the rod if it is made of steel, k = 18 W/m? oC. 2.1.4 Determine the rate of heat transfer through the rod if it is made of granite, k = 1.2 W/m? oC. (2) 2.1.5 Comment on the answers you calculated for the rate of heat transfer for copper, steel and granite. (2) 2.2A 2 m x 1.5 m section of wall of an industrial furnace burning natural gas is not insulated, and the temperature at the outer surface of this section is measured to be 80oC. The temperature of the furnace room is 30oC, and the combined convection and radiation heat transfer coefficient at the surface of the outer furnace is 10 W/m2 ? oC. It is proposed to insulate this section of the furnace wall with glass wool insulation (k = 0.038 W/m? oC) in order to reduce the heat loss by 90%. Assuming the outer surface temperature of the metal section still remains at about 80oC, determine the thickness of the insulation that needs to be used

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A steel pipe has an outer diameter of 0.06 m. It is covered with a 0.05...
A steel pipe has an outer diameter of 0.06 m. It is covered with a 0.05 m thick layer of magnesia (k = 0.07 W m-1 K -1) which in turn is covered with a 0.04 m layer of fibreglass insulation (k = 0.048 W m-1 K -1). The pipe wall outside temperature is 380 K, and the outside surface temperature of the fibreglass is 310 K. What is the interfacial temperature between the magnesia and the fibreglass? [Q/L =...
In a steel spherical reactor with a heat transmission coefficient (10 + X) W / mK,...
In a steel spherical reactor with a heat transmission coefficient (10 + X) W / mK, water is boiled at 350 oC. The inner diameter of the tank is 80 cm and the wall thickness is (5+ (X / 2)) cm. This tank is insulated with (X) cm thick concrete (k = 2.5 W / mK). Outdoor heat transfer coefficient (10+ (X)) W / m2K, indoor heat transfer coefficient is 500 W / m2K. Calculate both surface temperatures of the...
The wall of an industrial furnace is constructed from unknown material with 0.5 m . Measurements...
The wall of an industrial furnace is constructed from unknown material with 0.5 m . Measurements made during steady state operation reveal temperature at the inner and outer surface, respectively. What is the rate of heat loss through a wall that is 2 m X 3.5 m on a side Abstract: Introduction: Results Material A Material B Material C ∆? K q ∆? K q ∆? K q    Each box has three rows And Graphic representation for x axis...
A heat-conducting rod, 0.90 m long and wrapped in insulation, is made of an aluminum section...
A heat-conducting rod, 0.90 m long and wrapped in insulation, is made of an aluminum section that is 0.20 m long and a copper section that is .70m long. Both sections have a cross-sectional area of .000040m2. The aluminum end and the copper end are maintained at temperatures of 30 degrees C and 230 degrees C respectively. The thermal conductivities of aluminum and copper are 205 W/m ∙ K (aluminum) and 385 W/m ∙ K (copper). What is the temperature...
A thin metallic wall may be constructed using copper (properties are given in the table). The...
A thin metallic wall may be constructed using copper (properties are given in the table). The piping is required to have a radius r = 0.008 m and carries steam at 385 K. The wall is inside a room surrounded by air at a temperature of 298 K. The wall is insulated with a material (properties are given in the table). Properties Copper Insulation material Thermal Conductivity (W/m per ˚C) 385 0.071 Density (kg/m3) 8940 453 i. If the external...
Uniform area, heat transfer problem A stove's walls are made up of a flat inner insulating...
Uniform area, heat transfer problem A stove's walls are made up of a flat inner insulating board 0.01m thick (thermal conductivity: 0.2 W m-1K-1) and a flat outer steel sheet 0.01m thick (thermal conductivity: 26 W m-1K-1). A mineral-wool (thermal conductivity: 0.065 W m-1K-1) is placed between these sheets. The inside temperature of the wall is 773K, how thick does the insulation have to be to maintain the outside wall temperature at 323K ? Assume that the ambient air temperature...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1...
A house has a composite wall of wood (exterior) (k = 0.12 W m-1 K -1 , 20 mm thick), fibreglass insulation (k = 0.045 W m-1 K -1 , 70 mm thick) and plasterboard (interior) (k = 0.25 W m-1 K -1 , 10 mm thick). Determine the total heat loss through the wall when the inside temperature is 20 °C, the outside temperature is -10 °C, the inside heat transfer coefficient is 15 W m-2 K -1 ,...
An insulated copper wire with a length of 1.2 m carries 20 A of current. The...
An insulated copper wire with a length of 1.2 m carries 20 A of current. The copper is 1 mm in diameter and the insulation (k=0.13 W/m. ºC) has a thickness of 0.8 cm. The wire has electrical resistance of 0.0321 Ω. Air at 25 ºC blows in crossflow over the wire to produce an external convective heat transfer coefficient of 219 W/m2. K. Assuming the copper is isothermal, find the copper temperature. Take the electrical resistivity of copper to...
A rectangular furnace wall is made of fire clay (Height = 3m, Width = 1.2m, thickness...
A rectangular furnace wall is made of fire clay (Height = 3m, Width = 1.2m, thickness L=0.17m) The temperautre of the inside surface ( area H x W, Tx, is 1592 K,and of the outside surface (area = H x W ), Tc is 1364 K Determine the temperature gradient Determine the heat transfer rate Determine the heat transfer flux Determine thermal resistance
An 8-m-long, uninsulated square duct of cross section 0.2 m X 0.2 m and relative roughness...
An 8-m-long, uninsulated square duct of cross section 0.2 m X 0.2 m and relative roughness 10-3 passes through the attic space of a house. Hot air enters the duct at 1 atm and 100oC at a volume flow rate of 0.15 m3/s. The duct surface is nearly isothermal at 60oC. Determine the rate of heat loss from the duct to the attic space and the pressure difference between the inlet and outlet sections of the duct. Evaluate air properties...