Question

Calculate the equilibrium constant for the hydration reaction of ethylene with water to produce ethanol at...

Calculate the equilibrium constant for the hydration reaction of ethylene with water to produce ethanol at a temperature of 280 K and a pressure of .8 atm

C2H4 + H2O -----> CH3CH2OH

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the degree of dissociation for the hydration reaction of ethylene with water to produce ethanol...
Calculate the degree of dissociation for the hydration reaction of ethylene with water to produce ethanol at a temperature of 273 K and a pressure of .8 atm C2H4(g) + H2O(g) ---> C2H5OH(g)
The synthesis of ethanol from ethylene and water proceeds using the following reaction. C2H4(g) + H2O(l)...
The synthesis of ethanol from ethylene and water proceeds using the following reaction. C2H4(g) + H2O(l) C2H5OH(l) ΔGºrxn = -116.6 kJ/mol Determine the Gibbs free energy if the pressure of the vessel is 325 atm at 570 K. A) -144.0 kJ/mole B) -89 kJ/mole C) -27526 kJ/mole D) none of these I tried B but it is incorrect
Ethylene can be converted to ethanol according to the following reaction: C2H4(g) + H2O(g) ⇌ CH3CH2OH(l)...
Ethylene can be converted to ethanol according to the following reaction: C2H4(g) + H2O(g) ⇌ CH3CH2OH(l) The reaction is catalyzed by H+(aq). You will use the following table for this problem: Substance:    ΔGf (kJ/mol) C2H4(g)    74.2 H2O(g)     -231.9 CH3CH2OH(l) -177.8 Part 1: What is ΔGo of this reaction in kJ/mol? Part 2: What is the value of K for this reaction given your value of ΔGo in part 1 at 25oC?
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at...
For the equilibrium Br2(g) + Cl2(g) ⇌ 2 BrCl(g) the equilibrium constant Kp is 7.0 at 400 K. If a cylinder is charged with BrCl(g) at an initial pressure of 1.00 atm and the system is allowed to come to equilibrium what is the final (equilibrium) pressure of BrCl? For the equilibrium  the equilibrium constant  is 7.0 at 400 . If a cylinder is charged with  at an initial pressure of 1.00  and the system is allowed to come to equilibrium what is the...
Question Number II (17 Marks) Ethanol (EtOH) can be produced by the hydration of ethylene, C2H4...
Question Number II Ethanol (EtOH) can be produced by the hydration of ethylene, C2H4 + H2O ⇔ C2H5OH, at 300°C and high pressure with a phosphoric acid catalyst. Downstream of the reactor, a condenser is used to separate the product, which contains only EtOH and H2O, from a recycle stream that mixes with the fresh feed before entering the reactor. The fresh feed contains 30 mol% C2H4 and the remainder is steam. The single pass conversion is 20%. a. Draw...
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ...
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno = -100 J/K. (Don't round until the end. Using the exponent enlarges any round-off error.) b) Calculate the equilibrium constant at 146 K for the thermodynamic data in the previous question (Notice that Keq is larger at the larger temperature for an endothermic reaction) c) Calculate the equilibrium constant at 43 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno...
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts...
Ethanol is produced commercially by hydration of ethylene and during this process a side reaction converts some the ethanol to diethyl ether (DEE). In one process, a fresh feed containing ethylene, non-condensable inerts, and water are mixed with a recycle stream. The combined stream is fed to the reactor and it contains 182 mol/min of ethylene. While the fresh feed contains 9 moles of ethylene per mole of inerts, after mixing with recycle stream, the mole ratio of inerts to...
Consider the water–gas reaction, CO + H2O CO2 + H2 (a) Calculate the equilibrium constant, expressed...
Consider the water–gas reaction, CO + H2O CO2 + H2 (a) Calculate the equilibrium constant, expressed as log10 K, of the reaction at 298 K, (b) Calculate the equilibrium constant, expressed as log10 K, of the reaction at 1000 K
Ethanol (C2H5OH) is synthesized for industrial use by the following reaction, carried out at very high...
Ethanol (C2H5OH) is synthesized for industrial use by the following reaction, carried out at very high pressure. C2H4(g) + H2O(g) C2H5OH(l) What is the maximum amount, in kg, of ethanol that can be produced when 2.35 kg of ethylene (C2H4) and 0.0899 kg of steam are placed into the reaction vessel?
Calculate the equilibrium composition for the reaction H2 + 0.5 O2 <=> H2O when the ratio...
Calculate the equilibrium composition for the reaction H2 + 0.5 O2 <=> H2O when the ratio of the number of moles of elemental hydrogen to elemental oxygen is one. The temperature is 2000 K, and the pressure is 1 atm. Express the equilibrium composition in terms of mole fractions.