Question

a) Calculate the weight in lbf on earth of a 50.0 lbm object

b) Calculate the weight in lbf on the moon of a 50.0 lbm object. Note that the gravitational acceleration constant (g) on the moon is 1/6th of the value on earth.

Please show detailed steps

Answer #1

A) What is the weight of a 69 kg astronaut on Earth?
B) What is the weight of a 69 kg astronaut on the Moon?
(g = 1.7 m/s2).
C) What is the weight of a 69 kg astronaut on Mars? (g
= 3.7 m/s2).
D) What is the weight of a 69 kg astronaut in outer space
traveling with constant velocity?

Calculate, using Newton's law of gravity, the size of the force
of attraction between the earth and a mass of 2.0 kg on the earth.
Data: Distance to the center of earth from the surface = 6370 km.
Mass of earth = 5.98·1024kg. Gravitational constant G = 6.67·10-11
Nm2/kg2.
Calculate, using Newton's law of gravity, the size of the force
of attraction between the moon and a mass of 2.0 kg on the earth's
surface nearest the moon. Data: Distance...

If you weigh 690 N on the earth, what would be your weight on
the surface of a neutron star that has the same mass as our sun and
a diameter of 22.0 km ? Take the mass of the sun to be ms =
1.99×1030 kg , the gravitational constant to be G = 6.67×10−11
N⋅m2/kg2 , and the free-fall acceleration at the earth's surface to
be g = 9.8 m/s2 .
Express your weight wstar in newtons.

A 50.0-g object connected to a spring with a force constant of
100.0 N/m oscillates on a horizontal frictionless surface with an
amplitude of 8.00 cm.
a) What is the period (in seconds) and frequency of its
motion?
b) Assuming that the object's equilibrium position (i.e. when
the spring is unstretched) is designated as x = 0, and that at t =
0 the object is located at maximum amplitude, x(t) = A cos (ωt),
describes the motion. What is...

Assuming an object has a total mass of M and gravitational
constant on earth = g, air resistance = Cd, total surface area = A,
initial height = H, and this object has a thruster (assuming
constant thrust = F_thrust) that ignites at a time T_ignition and
stops burning at time T_turnoff (T_turnoff and T_ignition occur at
different time during the process), please derive an equation for
the velocity of this linear vertical motion as a function of time,
V(t).

(A) Calculate the acceleration of gravity,
gC, on Ceres
Apply the kinematics displacement equation to the falling
rock.
(1)
Δx = 1/2at2 +
v0t
Substitute Δx = -10.0 m, v0 = 0,
a = -gC, and t = 8.06 s, and
solve for the gravitational acceleration on Ceres,
gC.
-10.0 m = -1/2gC(8.06 s)2 →
gC = 0.308 m/s2
(B) Find the mass of Ceres.
Equate the weight of the rock on Ceres to the gravitational
force acting on the...

Calculate the magnitude of the acceleration of gravity for an
object that is (a) 0m, (b) 7550m, (c) 6.75×105m, and (d)
7.47×106m above the surface of the Earth. Take the
radius of a spherical Earth to be RE =
6.37×106m and the mass of Earth to be ME =
5.97×1024kg.

A space shuttle is orbiting around Earth, at distance r = 6.77 x
106 m away from the center of Earth. At this distance,
gravitational acceleration is equal to g = 8.69 m/s2.
There is an astronaut aboard the space shuttle, she is 1.70 m tall.
The difference in gravitational acceleration betweeen her feet and
her head is Δg = -4.36 x 10-6 m/s2
Considering the above information, answer parts a, b, c, d, and
e below. Include your explanation...

1. Consider a satellite which is in orbit around the
earth. Which of the following statements is
true?
a. The satellite and the earth experience the same force of
gravitational attraction.
b. The satellite and the earth experience the same
acceleration.
c. The satellite experiences a stronger gravitational force than
the earth.
d. The gravitational force acting on the satellite (which is in
outer space) is zero.
e. Only the satellite experiences a gravitational force, and not
the earth.
2....

Objects near Earth fall due to gravity. The acceleration of an
object due to gravity. The acceleration of an object due to gravity
is then
x" = g,
where x represents the distance above the ground and g = (wave;
about same) -9.8m/s(^2)
a. Find the general solution to the equation
b. Given the initial data x(0) = 0 and x'(0) = 1, find the
particular solution
c. Plot your solution over a meaningful range of time
d. When is...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 4 minutes ago

asked 16 minutes ago

asked 29 minutes ago

asked 36 minutes ago

asked 37 minutes ago

asked 39 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago