Question

A certain hydrogen-like atom emits light with a frequency of 2.2x10^16 Hz associated with the n=2...

A certain hydrogen-like atom emits light with a frequency of 2.2x10^16 Hz associated with the n=2 to n=1 transition. What frequency light will be emitted for the n=3 to n=2 transition for this atom?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen...
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen atom makes a transition from an orbital in n=6 to an orbital in n=5
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain...
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain what is happening inside an atom when it absorbs light. 10) An excited hydrogen atom emits light with a frequency of 1.141 x 1014 Hz for its electron to reach the n=4 energy level. In which energy level did the electron begin? Big hint: what is the sign (neg or pos) of the electron’s energy change? (Remember, it says “emits”) Use this sign when...
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 2 to an orbital in which n = 5. Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to an orbital in n = 5.
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump...
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. (a) [7] What is the energy of the emitted photon in eV? (b) [4] What are the frequency and wavelength of the photon? (c) [4] In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
Determine the end (final) value of n in a hydrogen atom transition, if the electron starts...
Determine the end (final) value of n in a hydrogen atom transition, if the electron starts in n = 2 and the atom absorbs a photon of light with a frequency of 4.57 × 10 14 Hz. (This question has already been posted, however, the answers for it dont match the options).
An electron in a hydrogen atom undergoes a transition from the n = 6 level to...
An electron in a hydrogen atom undergoes a transition from the n = 6 level to some lower energy level. In doing so, energy is released in the form of light. a) Calculate the frequency in s-1 (to 3 significant figures) of a photon of light associated with the highest frequency transition (i.e. largest difference in frequency) possible from the n = 6 to a lower level. (HINT: Try drawing a picture first…) b) Calculate the wavelength (in nm) of...
2.) Which transition in a hydrogen atom would absorb the photon of greatest frequency? n =...
2.) Which transition in a hydrogen atom would absorb the photon of greatest frequency? n = 3 to n = 1 n = 6 to n = 2 n = 2 to n = 9 n = 35 to n = 2 n = 12 to n = 6 n = 1 to n = 4 ***NOT n=2 to n=9***
An electron in an excited state of a hydrogen atom emits two photons in succession, the...
An electron in an excited state of a hydrogen atom emits two photons in succession, the first at 3037 nm and the second at 94.92 nm, to return to the ground state (n=1). For a given transition, the wavelength of the emitted photon corresponds to the difference in energy between the two energy levels. What were the principal quantum numbers of the initial and intermediate excited states involved?
A hydrogen atom undergoes a transition from n = 5 to n = 2. Considering the...
A hydrogen atom undergoes a transition from n = 5 to n = 2. Considering the fact that it may go through intermediate steps between 5 and 2 (for example, 5 → 3 → 2), a) what is the shortest possible wavelength for emitted photons? b) what is the longest possible wavelength for emitted photons?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT