Question

) An ideal gas (C_{p} = 5 kcal/kmol, C_{v} = 3
kcal/kmol) is changed from 1 atm and 22.4 m^{3} to 10 atm
and 2.24 m^{3} by the following reversible process

(i) Isothermal compression

(ii) Adiabatic compression followed by cooling at constant volume

(iii) Cooling at constant pressure followed by heating at constant volume

Calculate the heat, work requirement, ?U and ?H for each process.

Answer #1

Ten liters of a monoatomic ideal gas at 25o C and 10
atm pressure are expanded to a final pressure of 1 atm. The molar
heat capacity of the gas at constant volume, Cv, is 3/2R and is
independent of temperature. Calculate the work done, the heat
absorbed, and the change in U and H for the gas if the process is
carried out
(1) isothermally and reversibly, and
(2) adiabatically and reversibly.
Having determined the final state of the...

N moles of this gas undergoes the following cyclical process
composed of four reversible steps:
i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2
and P2);
ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2
and P3);
iii. Isovolumetric heating from state 3 (T2 and P3) back to
state 4 (T4 and P4); and
iv. Adiabatic compression from state 4 (T4 and P4) to state 1
(T1 and P1).
We know that...

One gram-mole of ideal gas is contained in a piston-cylinder
assembly. Cp=(7/2)R, Cv=(5/2)R. The gas expands from 3 to 1 atm.
Heat of 1000J is transferred to the gas during the process.
External pressure maintains at 1 atm throughout. Initial
temperature of the gas is 300K. Find work and internal energy
change.

Consider 1.00 mol of an ideal gas (CV = 3/2 R)
occupying 22.4 L that undergoes an isochoric (constant volume)
temperature increase from 298 K to 342 K. Calculate ∆p, q , w, ∆U,
and ∆H for the change.
For Units, pressure in atm and the rest in J.

A perfect gas has a constant volume molar heat capacity of CV ,m
1.5 R and a constant pressure molar heat capacity of Cp,m 2.5
R . For the process of heating 2.80 mol of this gas with a 120 W
heater for 65 seconds, calculate
a) q, w, T, and U for heating at a constant volume,
b) q, w, T, and H for heating at a constant pressure.
Note: Square = Delta

a) Calculate delta S(system) for the reversible heating of 1 mol
of ethane from 298K to 1500 K at constant pressure. Use Cp = 5.351
+ 177.669x10-3 T – 687.01x10-7 T ^2 + 8.514x10-9 T ^3 (J/mol K).
Consider the reversible Carnot cycle discussed in class with 1 mol
of an ideal gas with Cv=3/2R as the working substance. The initial
isothermal expansion occurs at the hot reservoir temperature of
Thot=600C from an initial volume of 3.50 L to a...

An ideal gas at 300 K has a volume of 15 L at a pressure of 15
atm. Calculate the:
(1)the ﬁnal volume of the system,
(2) the work done by the system,
(3) the heat entering thesystem,
(4) the change in internal energy when the gas undergoes
a.- A reversible isothermal expansion to a pressure of 10
atm
b.- A reversible adiabatic expansion to a pressure of 10
atm.

a. One mole of an ideal monoatomic gas (closed system, Cv,m)
initially at 1 atm and 273.15 K experiences a reversible process in
which the volume is doubled. the nature of the process is
unspecified, but the following quantities are known, deltaH=2000.0J
and q=1600.0J. Calculate the initial volume, the final temperature,
the final pressure, deltaU, and w for the process.
b. Suppose the above gas was taken from the same initial state
to the same final state as in the...

A 2.0 mol sample of ideal gas with molar specific heat
Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine
the final temperature and the work done on the gas when 1.6 kJ of
heat is added to the gas during each of these separate processes
(all starting at same initial temperature and pressure: (a)
isothermal (constant temperature) process, (b) isometric (constant
volume) process, and (c) isobaric (constant pressure) process.
Hint: You’ll need the 1st Law...

A sample consisting of 2.5 moles of ideal gas (Cp,m
=20.8 J/K) is initially at 3.25 atm and 300 K. It undergoes
reversible adiabatic expansion until its pressure reaches 2.5 atm.
Calculate the final volume, the final temperature, and the work
done.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 3 minutes ago

asked 9 minutes ago

asked 16 minutes ago

asked 27 minutes ago

asked 31 minutes ago

asked 31 minutes ago

asked 33 minutes ago

asked 34 minutes ago

asked 34 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 43 minutes ago