Question

A liquid-phase reaction A---> B is to be conducted in a CSTR at steady-state at 163°C....

A liquid-phase reaction A---> B is to be conducted in a CSTR at steady-state at 163°C. The temperature of the feed is 20°C, and 90% conversion of A is required. Determine the volume of a CSTR (L) to produce 130 kg of B per hour, and calculate the heat load (kW) for the process. Does this represent addition or removal of heat from the system? Data: cp,A = 2.0 J/g·K MW of A = 200 g/mol ? = 0.95 g/cm3 MW of B = 200 g/mol k = 0.80 h-1 at 163°C ?HR = -87 kJ/mol

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A first order, liquid-phase reaction A ?products, is conducted in a 2000 L CSTR. The feed...
A first order, liquid-phase reaction A ?products, is conducted in a 2000 L CSTR. The feed contains pure A, at a rate of 300 L min-1 , with an inlet concentration of 4.0 mol L-1 . The following additional data are available: cP = 3.5 J g-1 K-1; ? = 1.15 g cm-3 ; ?HRA = -50 kJ mol-1 (you can assume that these values are constants) kA = A e-EA/RT = 2.4 x 1015e-12,000/T min-1 , with T in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in...
he elementary liquid-phase reaction: A + B -----> C is to be carried out non-isothermally in a flow system with reaction constant,k= 0.07 dm^3mol-1min-1at 300K. The concentrations of each feed stream of A and B is 2 mol dm-3. The volumetric flow rate of each feed stream is 5 dm^3min-1. The two steams are mixed immediately prior to entering the reactor system. This flow system is conducted at 300K with two reactors: a 200 dm^3 stainless steel CSTR and an...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
Consider the CSTR with first order reaction and the process parameters and variables are given by:...
Consider the CSTR with first order reaction and the process parameters and variables are given by: The process parameters and variables are defined as: CA0 = feed concentration = 2.7 mol/L. Cp = heat capacity of the reactor feed and product (1000 cal/kg*K) = Cv. E/R = normalized activation energy (20,000 K). F = mass feed rate and product rate (10 kg/s). k0 = rate constant (1.97×10^24 1/s). Q = heat addition rate (initially 700,000 cal/s). T0 = feed temperature...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C...
Consider a plug flow reactor with a reversible isothermal gas-phase reaction: A + B <--> C The reactor feed consists of a mixture of 50% A and 50% B. The reaction rate is: (-rA) = k1*CA*CB - k2*CC2 The inlet temperature is 500 K and the total pressure is 200 kPa. The volumetric feed flow rate is 10 m3/s. The rate constants have a values of: k1 = 0.1 m3/(mol*s) and k2 = 0,05 m3/(mol*s). a) Calculate the conversion of...
The gas phase reaction, 2A  B  C, is carried out in a PFR. The...
The gas phase reaction, 2A  B  C, is carried out in a PFR. The feed is equal molar in A and B and the entering temperature is 650K and the entering pressure is 21 atm. If the exit conversion is X, then the exit concentration of B (in mol/dm3 ) is:
The elementary gas phase reaction A + B C is to be carried out isothermally in...
The elementary gas phase reaction A + B C is to be carried out isothermally in a continuous reactor. Reactants are entering with a stoichiometric proportions at 10 atm and 130°C molar flow rate of 20 mol/min. The exit conversion is 90%. The following data was collected from experimental work T, K kA (min-1) 360 5.38 368 8.35 376 12.73 385 16.34 395 21.23 410 28.61 425 33.81 Estimate the rate constant and the activation energy Calculate the required volume...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally...
Part I The elementary gas phase reaction (CH3)3COOC(CH3)3 --> C2H6 + 2CH3COCH3 is carried out isothermally in a flow reactor. The reaction rate constant at 500C is 1x10-4 min-1 and the activation energy is 85 kJ/mol. Pure di-tert-butyl peroxide enters the reactor at 10 atm and 127oC and a molar flowrate of 2.5 mol/min. Calculate the reactor volume and space time to achieve 90% conversion in; a) PF reactor b) CSTR reactor c) Propose the diameter (Dt) and length (L)...
Carbon dioxide (CO2) gas is compressed at steady state from 0.8 bar and 17 °C to...
Carbon dioxide (CO2) gas is compressed at steady state from 0.8 bar and 17 °C to 3.5 bar with a compressor drawing 10 kW of power. The CO2 flows through the compressor at a rate of 0.1 m3/s through an inlet orifice that is 200 cm2. The gas leaves the compressor at a velocity of 12 m/s. Heat loss from the compressor to the surroundings is roughly 2% of the power fed to the compressor. In addition to the Give,...