Question

Steam is fed to a turbine that is 85% efficient. The steam enters the turbine at...

Steam is fed to a turbine that is 85% efficient. The steam enters the turbine at 400 C and 7 MPa and

exits at 0.275 MPa. Determine the work output per kg of steam and the quality of the steam.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam flowing at steady state enters a turbine at 400 degrees Celsius and 7 MPa. The...
Steam flowing at steady state enters a turbine at 400 degrees Celsius and 7 MPa. The exit is at 0.275 MPa. The turbine is 85% efficient. What is the quality of the exiting stream? How much work is generated per kg of steam?
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa...
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa with a quality of 80 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 10 MW
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of...
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of 2 kg/s and leaves at 100 kpa. The isentropic efficiency of the turbine is 90%. Find (12 points) (a) Actual work output of the turbine _______________ (7 points) b) Maximum work output of the turbine_______________(3 points) (c) Entropy change during this process __________________________(2 points)
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power output of the turbine is 6 MW, determine: i)          Mass flowrate of the steam flowing through the turbine.                                      ii)        The isentropic efficiency of the turbine.
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine...
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine at 4.5 MPa, 600°c and 85 m/s and leaves the turbine at 40 kPa, quality of 0.8 and 50 m/s. Determine : a) the power output b) the turbine inlet area
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10...
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10 kPa with a quality of 90 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5 MW
Steam enters a turbine at 7Mpa and 450oC and exists at 600kPa as a mixture. The...
Steam enters a turbine at 7Mpa and 450oC and exists at 600kPa as a mixture. The steam enters the turbine through a 8cm diameter pipe at a speed of 83m/s. Heat is lost at a rate of 800kW through the turbine and the power output of the turbine is 4800kW, determine the quality of the mixture at the exit. (answer is .9707)
Steam flows through a turbine at a rate of 30 kg/s. It enters the turbine at...
Steam flows through a turbine at a rate of 30 kg/s. It enters the turbine at 600 degrees C and 4 MPa and leaves at 300 degrees C and 600 kPa. (a). If the turbine is operated adiabatically, what is the power produced by the turbine? (MW) (b). It is discovered that this turbine only produces 15.444 MW of power, what is rate of energy loss due to heat transfer? (kW) (c). Given the actual rate of work supplied by...
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT