Question

The equation of state of a gas is given as bar v(P+10/bar v^2) = RsubuT, where...

The equation of state of a gas is given as bar v(P+10/bar v^2) = RsubuT, where the units of bar v and P are m^3/kmol and kPa respectively. Now 0.49 kmol of this gas is expanded in a quasi-equilibrium manner from 1.6 to 4.9 m^3 at a constant temperature of 290 K. Determine the work done during this isothermal expansion process.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine the final temperature and the work done on the gas when 1.6 kJ of heat is added to the gas during each of these separate processes (all starting at same initial temperature and pressure: (a) isothermal (constant temperature) process, (b) isometric (constant volume) process, and (c) isobaric (constant pressure) process. Hint: You’ll need the 1st Law...
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT,...
The van der Waals equation of state is (P + a(n/V )^2)(V/n − b) = RT, where a and b are gas-specific constants. For Hydrogen gas, a = 2.45 × 10^-2P a · m^6 and b = 26.61 × 10^-6m^3/mol, while for an ideal gas a = b = 0. (a) Consider trying to measure the ideal gas constant in a lab from the relation R = P V/(nT), where P, V, n, and T are all measured parameters. However,...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
A gas is represented by the equation of state P= RT( 1/V + A/V^2 + B/V^3)...
A gas is represented by the equation of state P= RT( 1/V + A/V^2 + B/V^3) Express A and B in terms of critical constants. Hint: Use the expressions for critical behavior.
When gas expands in a cylinder with radius r, the pressure P at any given time...
When gas expands in a cylinder with radius r, the pressure P at any given time is a function of the volume V: P = P(V). The force exerted by the gas on the piston (see the figure) is the product of the pressure and the area: F = πr2P. The work done by the gas when the volume expands from volume V1 to volume V2 is W = V2 P dV V1 . In a steam engine the pressure...
Two moles of nitrogen are initially at 10 bar and 600 K (state 1) in a...
Two moles of nitrogen are initially at 10 bar and 600 K (state 1) in a horizontal piston/cylinder device. They are expanded adiabatically to 1 bar (state 2). They are then heated at constant volume to 600 K (state 3). Finally, they are isothermally returned to state 1. Assume that N 2 is an ideal gas with a constant heat capacity as given on the back flap of the book. Neglect the heat capacity of the piston/cylinder device. Suppose that...
As will be discussed in detail in Chapter 5, the ideal-gas equation of state relates absolute...
As will be discussed in detail in Chapter 5, the ideal-gas equation of state relates absolute pressure, P(atm); gas volume, V(liters); number of moles of gas, n mol ; and absolute temperature, T(K): PV 0:08206nT (a) Convert the equation to one relating P psig , V (ft3) , n (lb-mole) , and T (°F) . (b) A 30.0 mole%CO and 70.0 mole%N2 gas mixture is stored in a cylinder with a volume of 3.5ft^3 at a temperature of 85°F. The...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the following two step process: first an isothermal expansion against a constant pressure of 0.1 bar until the volume is doubled; followed by a cooling to -35.6 oC at constant volume. Calculate the following thermodynamic quantities for the total process: 1) Work (w) for step 1. 2) Heat (Q) for step 1. 3) Change in internal energy (U) for step 1. 4) Change in enthalpy...
6) A helium gas containing 10^26 He atoms has a pressure of 10.0 atm at a...
6) A helium gas containing 10^26 He atoms has a pressure of 10.0 atm at a volume of 1.00 m^3. a) What is its temperature? b) If an isothermal process expands the gas to 3.00 m^3, what is then the pressure? c) Would heat have to be added or removed in order to do this? d) If the expansion was instead adiabatic, would the work needed be smaller or larger? why? 7) A 1.5 kg mass is hanging from a...
A 5 kg mass of R134a refrigerant is compressed polytropically from the state initial: p1 =...
A 5 kg mass of R134a refrigerant is compressed polytropically from the state initial: p1 = 1 bar, T1 = 27 ° C until the final state: p2 = 15 bar, T2 = 227 ° C. Specific heat R134a medium at constant volume, Cv = 0.72 kJ / kg K. Calculate: a) exponent of polytropy; b) final volume; c) final volume using the virial state equation d) work done on the gas for compression; e) amount of heat given up...