Question

Methane enters a heat e xchanger at a volumetric flow rate of 145.0 m 3 /min,...

Methane enters a heat e xchanger at a volumetric flow rate of 145.0 m 3 /min, at an absolute pressure of 1.013 bar and temperature of 15.0°C. At these conditions, the specific enthalpy of methane is - 23.181 kJ/kg. The methane leaves the heat exchanger at an absolute pressure of 1.0 13 bar and temperature of 60.0°C. The corresponding specific enthalpy at these conditions is 78.656 kJ/kg. The methane is heated by a stream of saturated steam entering the heat exchanger at 2.0 bar (absolute) and leaving as a liquid at 58°C. Find the volu metric flow rate of saturated steam into the heat exchanger by following the steps below. (1) D raw and label the flowchart. This may get tricky. (2) What is the mass flow rate of methane into the heat exchanger? (3) What rate of heat is supplied to the methane stream in order to heat it from 15.0°C to 60.0°C? (4) What is the minimum mass flow rate of saturated steam into the heat exchanger? (5) What is the volumetric flow rate of saturated steam into the heat exchanger?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Saturated steam at a gauge pressure of 3.00 bar is to be used to heat a...
Saturated steam at a gauge pressure of 3.00 bar is to be used to heat a stream of ethane. The ethane enters a heat exchanger at 16°C and 1.5 bar gauge pressure at a rate of 895 m3/min and is heated at constant pressure to 93°C. The steam condenses and leaves the exchanger as a liquid at 24.0°C. The specific enthalpy of ethane at the given pressure is 941 kJ/kg at 16°C and 1073 kJ/kg at 93°C.   You may take...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10...
Oil enters a counterflow heat exchanger at 525 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure...
An oil stream flowing at a rate of 60 m3 /h (?oil = 952.9 kg/m3 ),...
An oil stream flowing at a rate of 60 m3 /h (?oil = 952.9 kg/m3 ), at temperature of 10°C is to be heated to 175°C+/-0.5°C in a heat exchanger using high pressure saturated steam. (a) With the aid of the steam tables appended to this paper determine the minimum pressure required of a saturated steam stream to achieve this result? [5%] (b) If the actual temperature of the condensing steam is to be 15°C?0.5°C above the minimum what is...
In order to heat up a distillation column for separating a mixture of reaction products, a...
In order to heat up a distillation column for separating a mixture of reaction products, a superheated steam, P3 having a flowrate of 1500kg/hr, at 1 bar and superheated condition is used. This steam is provided by a heat exchanger, after blending two steam streams, F1(kg/hr), saturated steam at 0.5 bar discharged from a turbine and F2(kg/hr), superheated steam at 5 bar and 600oC discharged from an exothermic reactor. The mixing unit operates adiabatically. i. Draw the flow diagram for...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s,...
Cold water enters a counter flow heat exchanger at 20ºC at a rate of 10 kg/s, where it is heated by a hot water stream that enters the heat exchanger at 80ºC at a rate of 2 kg/s. Assuming the specific heat of water to remain constant at Cp=4.18 kJ/(kg.ºC), determine the maximum heat transfer rate and the outlet temperatures of the cold and the hot water streams.
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are:...
Synthesis gas may be produce by the catalyst reforming of methane with steam. The reactions are: CH4 + H2O → CO + 3H2 CO + H2O → CO2 + H2 A small plant is being to produce 1000 mol/s of hydrogen (H2) by the reactions. 280 mol/s of Methane with 100 % of excess steam (excess % relative to the reaction one) are fed to the heat exchanger at 150 °C and heated with superheated vapor. The superheated vapor inlet...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...