Question

A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device...

A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device starts and goes through a Carnot cycle and generates 500.3 kJ work. If the maximum temperature that water will reach is 1.5 times the minimum temperature of water and during heat rejection process, water goes from saturated vapor to saturated liquid phase Find: 1. QH & QL for this cycle 2. TH & TL for this cycle . 3. Maximum and minimum pressures that the cycle will reach 4. Show this process on a T-v diagram and label temperature, pressures and specific volumes. (To get full points, your states, and your processes should be accurately placed in relation to isobaric lines and vapor dome) 5. The expansion and compression of water in this device are quasi-equilibrium processes, EXPLAIN why this process delivers the highest amount of work 6. Find the pressure at remaining state(s)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 340 kPa . A resistance heater is operated within the cylinder with a current of 0.6 A from a 300 V source until the volume doubles. At the same time a heat loss of 7 kJ occurs. Part A)Determine the final temperature (T2). Part B)Determine the duration of the process. Part C) What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
a plunger cylinder device contains 0.8 kg of water at 4 Mpa and 500 ° C,...
a plunger cylinder device contains 0.8 kg of water at 4 Mpa and 500 ° C, it begins to lose heat causing the piston to descend to a set of stops inside the cylinder, at which point saturated steam is obtained through an isobaric process. Cooling continues until the cylinder contains water at 1 atm pressure. The heat transferred during this process is kJ
A cylinder-piston device contains a mass of 2.4 kg of liquid-vapor mixture water with 70% titer...
A cylinder-piston device contains a mass of 2.4 kg of liquid-vapor mixture water with 70% titer at 50 bar. The system goes through a process of cooling to constant pressure until the obtaining compressed liquid with 14 ºC of subcooling. Evaluate: (i) The initial and final temperatures of the process. (ii) The specific enthalpy at the beginning of the process. (iii) The change in total volume during the process. (iv) The amount of heat removed from the system during the...
Entropy From Steam Tables A piston-cylinder assembly contain 2 kg of water. The water is initially...
Entropy From Steam Tables A piston-cylinder assembly contain 2 kg of water. The water is initially at the pressure of 0.5 MPa and the temperature of 300°C. The water is cooled down at constant pressure process until it is a saturated vapor. Determine the change in the entropy of the system.
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework....
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework. Previously, you modeled it as a Carnot cycle; now you will use the more realistic Rankine cycle. The boiler operates at 1000 kPa with a maximum temperature of 30°C. The condenser is isobaric and operates at -5°C. a. Calculate the vapor quality leaving the turbine and the specific enthalpy exiting the turbine (in kJ/kg) b. Determine the specific-work produced by the Rankine cycle turbine...
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1)....
1-kg water in a frictionless piston-cylinder device is initially at 250°C and 300 kPa (state 1). A total of 700 kJ of work is done ON the water in order to isothermally reduce its volume to 1/20 of its initial volume (state 2). Determine the magnitude and direction of the heat transfer involved in this process. Answer: -1147 kJ.
One kg of water in a piston-cylinder assembly undergoes two processes in series from an initial...
One kg of water in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 0.8 MPa, T1 = 500°C: Process 1-2: Constant-pressure compression until the volume is half of the initial volume. Process 2-3: Constant-volume cooling until the pressure drops to 400 kPa. Sketch the two processes in series on a p-v and T-v diagram. Determine the work and heat transfer for both processes.
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C....
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C. The atmospheric pressure on the outside of the system is P=1.0 bar. Heat is then added until the water is completely converted to saturated vapor. (a) What are the changes in specific volume, v2-v1 (m3/kg) and internal energy, u2-u1 (kJ/kg) of the water for this process? (b) How much specific work, if any, is done by the system? (c) What is the amount of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...