Question

A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine....

A power plant uses an adiabatic single-flash process coupled with a liquid-vapor separator and a turbine. (1) Flash Chamber (2) Seperator (3) Steam Turbine. Saturated liquid water enters the flash chamber (which behaves like a throttling valve) at 230 degrees C at a rate of 44 kg/s and leaves at a pressure of 700 kPa. The stream then enters the separator where the liquid is collected at the bottom of the unit while the vapor portion of the stream continues to the turbine. The steam leaving the turbine has a pressure of 30 kPa and has a quality of 0.93.

(a) What is the quality of the steam immediately after the flash chamber?

(b) What is the rate of liquid extration in the separator unit? (kg/s)

(c) What is the rate of work produced by the turbine? (kW)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa....
Steam enters an adiabatic turbine at 140 bar and 560 C and leaves at 10 kPa. At the exit, the pressure and quality are 50 KPa and .90, respectively. Determine the power produced (kW) by the turbine if the mass flow rate is 1.63 kg/s.
. An adiabatic heat exchanger receives 3 kg/s of R12 as a saturated vapor at 960...
. An adiabatic heat exchanger receives 3 kg/s of R12 as a saturated vapor at 960 kPa and condenses it to a saturated liquid at this pressure.   The cooling water at 100 kPa enters the heat exchanger at 20 C and leaves at 35 C.   Determine the heat transfer to the water in kW and the water flowrate in kg/s.   385.6 kW    6.09 kg/s
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. So what is the net turbine job for the unit mass? be quıck
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 17 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. In this case, what is the amount of heat from the Condenser to the surrounding environment for the unit mass? be quıck
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of...
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of the steam are 6 MPa, 400 °C and 119 cm2 . The exit conditions are 40 kPa, 92 percent quality, 50 m/s and 20 kg/s. Determine the power output.
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the...
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the mass flow rate is 0.75 kg/s, and the air at the exit is 500 K and 155 kPa, then what is the temperature and pressure at the inlet of the turbine? (a) The temperature is? K (b) The pressure is? kPa NOTE: Do NOT approximate the air as having a constant specific heat.
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...
NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT