Question

Question 2. Answer all parts of this question a) A shell and tube heat exchanger is to heat 10,000 kg h–1 of water from 16 to 84°C using hot oil entering at 160°C and leaving at 92°C. The oil will flow through the shell of the heat exchanger. The water will flow through 11 brass tubes of 22.9 mm inside diameter and 25.4 mm outside diameter, with thermal conductivity 137 W m–1 K–1, with each tube making two passes through the shell.

i) Using the Colburn Equation, given

Nu = 0.023Re0.8 Pr0.333 show that the convection heat transfer coefficient of the water flowing through the tubes is about 3300 W m–2 K–1. (Assume the density of water is 988 kg m–3 and find the other thermophysical properties of water from steam tables. Don’t forget to divide the total flowrate by the number of tubes to get the flowrate through each tube, in kg s–1.) [10 marks]

ii) The shell side heat transfer coefficient is 400 W m–2 K–1. Calculate the overall heat transfer coefficient based on the outside area of the tubes, assuming negligible fouling resistances. [4 marks] Answer: 351 W m–2 K–1

iii) Using the correction factor chart shown in Figure 2.1, determine the appropriate correction factor. [5 marks] Answer: 0.85

b) The oil in part (a) is pumped into the heat exchanger using a centrifugal pump. i) Power has dimensions of ML2T–3. Use dimensional analysis to derive a relationship between pumping power (P), fluid density ( ?), impeller diameter (D) and impeller rotational speed (N) of the form: P = K ? aNbDc [5 marks] Answer: P = K ? N 3 D

5 ii) A centrifugal pump is an example of a rotodynamic pump. Discuss the advantages and disadvantages of centrifugal pumps compared with positive displacement pumps. [6 marks]

Answer #1

Water at a flow rate of 60 kg/s enters the shell-side
of a baffled shell-and-tube heat exchanger at 35 °C and leaves at
25 °C. The heat will be transferred to 150 kg/s of raw water coming
from a supply at 15 °C. You are requested to design the heat
exchanger for this purpose. A single shell and single tube pass is
preferable. The tube diameter is ¾ in. (19 mm outer diameter with
16 mm inner diameter) and tubes...

A shell and-tube heat exchanger is required for the following
service:
Hot stream
Cold Stream
Aromatic Stream
Cooling Water
inlet Temperature (oC)
85
20
outlet Temperature (oC)
40
35
Mass Flowrate x heat Capacity (kW/oC)
85.2
Hot Stream
cold stream (Cooling water)
Heat Capacity (J/kg K)
2840
4193
Density (kg/m3)
750
999
Viscosity (cP)
0.34
1.016
Thermal conductivity (W/m.K)
0.19
0.594
Fouling Factor (m2.oC/W
0.00018
0.000176
? The cooling water is allocated to the tube-side of the
exchanger.
? It...

A horizontal shel-and-tube heat exchanger with two tube passes
and one shell pass is being used to heat 9 kg/s of 100% ethanol
from 25 to 65 C at atmospheric pressure. The ethanol pasar through
the inside of the tubes, and saturated steam at 115 C condenses an
the shell of the tubes. The tubes are atell with an OD of 0.019 m
and a BWG of 14. The exchanger contains a total of 100 tubes (50
tubes per pass)....

The condenser of a large steam power plant is a heat exchanger
in which steam is condensed to liquid water. Assume the condenser
to be a parallel flow shell-and-tube heat exchanger consisting of a
single shell and 10,000 tubes, each executing two passes. The tubes
are of thin wall construction with D = 30 mm and the steam
condenses on their outer surface. The heat transfer rate that must
be effected by the exchanger is Q = 2 × 10^9...

A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K,
kf = 0.5764 W/m ? K, ? = 1.3 × 10–3 N ? s/m2) flows at
rate of 60,000 kg/hr and is to be heated from 25°C to 50°C. Water
at 95°C is available at a flow rate of 75,000 kg/hr (cp = 4004 J/kg
? K). It is proposed to use a one shell pass and two tubes pass
shell-and-tube heat exchanger containing 3/4 in. OD,...

A thin-walled double pipe counter flow heat exchanger is to be
used to cool oil (cp = 2200 j/kg*K) from 150 ℃ to 30 ℃ at a rate of
2.1 kg/s by water (cp= 4180 J/kg*K) that enters at 20 ℃ at a rate
of 1.2 kg/s. The diameter of the tube is 2.5 cm, and its length is
10 m.
Using Excel (a) Determine the overall heat transfer coefficient
of this heat exchanger. (b) Investigate the effects of oil...

Data for carbon dioxide:
Molecular weight:44.0
Heat capacity of gas phase: 0.036+4.23
x10-5T (in kJ/moleoC, T is
in oC)
Viscosity Pr k
(W/m K)
180oC2.13 x10-5kg/(m
s) 0.721 0.029
130oC 1.93x10-5kg/(m
s) 0.738 0.025
80oC 1.72x10-5kg/(m
s) 0.755 0.020
Approximate density: 2.0 kg/m3
Data for water:
Molecular weight:18.0
Heat capacity for liquid water: 0.0754 kJ/mole
oC
Viscosity:
Viscosity Pr k
(W/m K)
180oC139 x10-6kg/(m
s) 0.94 0.665
130oC 278x10-6kg/(m
s) 1.72 0.682
80oC 472x10-6kg/(m
s) 3.00 0.658
Ideal gas constant:
0.08206 L atm/(mol K)
Carbon dioxide, with flow rate of 0.10 kg/s, is to be cooled
from 180 oC to 80...

heat transfer problem
A counterflow concentric tube heat exchanger is used to cool
lubricant oil of a big gas turbine. The cooling water's flow rate
through the interior aluminum tube (Di= 25mm) is 0.2kg/seg, while
the oil's flow rate through the exterior ring (Do= 45mm) is
0.1kg/seg. The oil and the water enter at 100°C and 30°C
respectively. How long does the tube have to be for oil to leave at
60°C?
Oil at 80°C
Cp = 2131 J/Kg K...

A process fluid having a specific heat of 3500 J/kg?K and
flowing at 2 kg/s is to be cooled from 80 °C to 40 °C with chilled
water, which is supplied at a temperature of 15 °C and a flow rate
of 2.5 kg/s. Assuming an overall heat transfer coefficient of 2000
W/m2?K, calculate the required heat transfer areas for the
following exchanger configurations: (a) Parallel flow; (b) Counter
flow; (c) a 1-2 shell and tube exchanger with the water...

A counter current double pipe heat exchanger is used to boil but
not superheat water at 100 DegreeC at rate of about 0.1 kg/s. This
is achieved by flowing hot oil at 400 DegreeC through the inner
pipe at a rate of 5 kg/s.
Latent heat of water: 2265 kJ/kg
Heat capacity of water: 4180 J/kgK
Heat capacity of the oil: 1800 J/kgK
What is the temperature of he hot oil leaving the heat
exchanger?
What is the overall heat...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 11 minutes ago

asked 24 minutes ago

asked 40 minutes ago

asked 56 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago