Question

Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 =...

Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 = 300 K to T2 = 450 K. The molar entropy in the initial state is given as s1 = 100 J K–1 mol–1, and here, for ethylene, cp = ?T + c0 with ? = 0.1 J K–2 mol–1 and c0 = 13.1 J K–1 mol–1. Determine the change of the molar entropy s2 – s1 and the change of the chemical potential ?2 – ?1 for the fluid during this process.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i....
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2); ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3); iii. Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4); and iv. Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1). We know that...
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic...
In this problem, 1.10 mol of an ideal gas at 300 K undergoes a free adiabatic expansion from V1 = 12.3 L to V2 = 22.2 L. It is then compressed isothermally and reversibly back to its original state. (a) What is the entropy change of the universe for the complete cycle? J/K   (b) How much work is lost in this cycle? J
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b)...
2. p1V1γ= p2V2γ is only correct when (a) a perfect gas undergoes an adiabatic process.        (b) a perfect gas undergoes a reversible process. (c) a perfect gas undergoes a reversible adiabatic process.     (d) a real gas undergoes a reversible adiabatic process.      4. If a simple (meaning one-component, single phase) and homogeneous closed system undergoes an isobaric change with expansion work only, how Gibbs free energy varies with temperature?      (a) (G/T)p> 0        (b) (G/T)p< 0      (c) (G/T)p= 0        (d) Depending on...
Consider the adiabatic, reversible expansion of a closed 1 mole sample of monatomic ideal gas from...
Consider the adiabatic, reversible expansion of a closed 1 mole sample of monatomic ideal gas from P1 = 100 bar, V1 = 1dm3, and T1 = 1200K to V2 = 1.5 dm3. What is the final temperature of the gas? What are the values of ΔE, ΔS and w for the process described in the previous question? ΔE = kJ ΔS = J/K w = kJ
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
a) Calculate delta S(system) for the reversible heating of 1 mol of ethane from 298K to...
a) Calculate delta S(system) for the reversible heating of 1 mol of ethane from 298K to 1500 K at constant pressure. Use Cp = 5.351 + 177.669x10-3 T – 687.01x10-7 T ^2 + 8.514x10-9 T ^3 (J/mol K). Consider the reversible Carnot cycle discussed in class with 1 mol of an ideal gas with Cv=3/2R as the working substance. The initial isothermal expansion occurs at the hot reservoir temperature of Thot=600C from an initial volume of 3.50 L to a...
Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.1 = constant....
Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.1 = constant. The initial volume is 0.1 m3 and the work for the process is 50 kJ. Assuming ideal gas behavior, and neglecting kinetic and potential energy effects, determine heat transfer, in kJ, and the entropy change, in kJ/K. Q = kJ ΔS = kJ/K
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of...
One mole of the gas Ar expands through a reversible adiabatic process, from a volume of 1 L and a temperature of 300 K, to a volume of 5 L. A) what is the final temperature of the gas? B) How much work has the expansion carried out? C) What is the change in heat? Assume this is a mono-atomic ideal gas. Note by asker: as the gas is mono-atomic, cp=(5/2)*R, cv=(3/2)*R
Determine the final specific volume (m3/kg) for a gas undergoing a process from state 1 (T1...
Determine the final specific volume (m3/kg) for a gas undergoing a process from state 1 (T1 = 324 K, v1 = 0.2353 m3/kg) to a temperature of T2 = 883 K if s2 - s1 = 0.961 kJ/kg-K. Assume constant specific heats as given below (DO NOT USE the ideal gas tables). Cp = 1.135 kJ/kg-K Cv = 0.759 kJ/kg-K Note: Give your answer to four decimal places. Correct Answer: [Correct] 0.4006 ± 1% Please show your methodology.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT