Question

The formation of styrene from vinylacetylene is essentially irreversible and follows an elementary rate law: 2...

The formation of styrene from vinylacetylene is essentially irreversible and follows an elementary rate law:

2 vinylacetylene ? styrene

2A ? B

The following data is available: CA0 = 1 mol / dm3 ; FA0 = 5 mol/s ; ?HR = -231 - 0.12( T -298) kJ/mol CP,A = 0.1222 kJ/(mol K) ; k = 1.48 x 1011exp (-19,124/T) dm3 /(mol s) T0 = 675 K ; Ua = 5.0 (kJ/(s*dm3*K) ; Text = 700 K

a) Determine the conversion achieved in a 10-dm3 PFR for an entering temperature of 675 K. Plot the temperature and conversion down the length (volume) of the reactor.

b) Vary the entering temperature and plot the conversion as a function of entering temperature.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? →...
The elementary liquid phase reaction takes place in an adiabatic flow reactor. ? + ? → ? An equimolar feed in A and B enters at 300K, and the volumetric flow rate is 2 dm3 /s and CA0= 100 mol/m3 . a) Calculate the PFR and CSTR volumes to achieve 75 % conversion. b) If the outlet temperature of the reactor is 550 K, for complete conversion, calculate the inlet temperature of CSTR. HA°(273 K) = - 20 kcal/mol, HB°...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a...
The elementary irreversible organic liquid-phase reaction, A + B → C, is carried out in a flow reactor. An equal molar feed in A and B enters at 27 oC, and the volumetric flow rate is 2 L/s. The feed concentration is CA0 = 0.1 mol/L. a) Calculate the PFR and CSTR volumes necessary to achieve 85% conversion when the reaction is carried out adiabatically. b) What is the maximum inlet temperature one could have so that the boiling point...
The irreversible gas phase rxn, A=> B+C is performed in an adiabatic, 800-liter PFR with a...
The irreversible gas phase rxn, A=> B+C is performed in an adiabatic, 800-liter PFR with a rate constant, k, as below: k=60*exp(-5000/T) s-1 The feed is pure A at 15 bar and 450 K with a volumetric flow rate of 1.956 L/s. The heat of rxn is -12 kJ/mol (independent of temperature), heat capacities are CPA = 40 J/mol/K, CPB = 15 J/mol/K, and CPC = 25 J/mol/K. The reaction is operated at constant pressure Plot (a) FA and FB...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate...
The isothermal and isobaric gas phase reaction A → B + C follows an elementary rate law and is to be carried out in a CSTR. The reaction constant k = 1.20 s-1 when the reaction temperature T = 300 K. (a) When pure A is fed to a CSTR at 300K and a volumetric flow rate of 5 dm3 /s,a conversion of X = 0.6 is achieved. Please determine the volume of the CSTR. (b) If the CSTR’s volume...
The elementary gas phase reaction A + B C is to be carried out isothermally in...
The elementary gas phase reaction A + B C is to be carried out isothermally in a continuous reactor. Reactants are entering with a stoichiometric proportions at 10 atm and 130°C molar flow rate of 20 mol/min. The exit conversion is 90%. The following data was collected from experimental work T, K kA (min-1) 360 5.38 368 8.35 376 12.73 385 16.34 395 21.23 410 28.61 425 33.81 Estimate the rate constant and the activation energy Calculate the required volume...