Question

Two moles of nitrogen are initially at 10 bar and 600 K (state 1) in a horizontal piston/cylinder device. They are expanded adiabatically to 1 bar (state 2). They are then heated at constant volume to 600 K (state 3). Finally, they are isothermally returned to state 1. Assume that N 2 is an ideal gas with a constant heat capacity as given on the back flap of the book. Neglect the heat capacity of the piston/cylinder device. Suppose that heat can be supplied or rejected as illustrated below. Assume each step of the process is reversible. Calculate the net work done overall.

Answer #1

An insulated cylinder is filled with nitrogen gas at 25ºC and
1.00 bar. The nitrogen is then compressed adiabatically with a
constant pressure of 5.00 bar until equilibrium is reached. i. What
is the final temperature of the nitrogen if it is treated as an
ideal gas with molar heat capacity CP = 7/2 R ?
ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the
compression. (Hint: Because the enthalpy is a state...

A cylinder with a piston contains 0.100 mol of nitrogen at
2.00×105 Pa and 320 K . The nitrogen may be treated as
an ideal gas. The gas is first compressed isobarically to half its
original volume. It then expands adiabatically back to its original
volume, and finally it is heated isochorically to its original
pressure.
A) Find the work done by the gas during the initial
compression
B) Find the heat added to the gas during the initial
compression...

A cylinder with a piston contains 0.160 mol of nitrogen at
1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal
gas. The gas is first compressed isobarically to half its original
volume. It then expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
a.) Find the work done by the gas during the initial
compression.
b.)Find the heat added to the gas during the initial
compression.
c.)Find...

P4.6. Steam at 400°C and 10 bar is left in an insulated 10 m^3
cylinder. The cylinder has a small leak, however. Compute the
conditions of the steam after the pressure has dropped to 1 bar.
What is the change in the specific entropy of the steam in the
cylinder? Is this a reversible process? The mass of the cylinder is
600 kg, and its heat capacity is 0.1 cal/g-K. Solve the problem
with and without considering the heat capacity...

1-kg water in a frictionless piston-cylinder device is initially
at 250°C and 300 kPa (state
1). A total of 700 kJ of work is done ON the water
in order to isothermally reduce its volume to
1/20 of its initial volume (state 2). Determine the magnitude and
direction of the heat transfer
involved in this process.
Answer: -1147 kJ.

Water, initially (state 1) a saturated liquid at
1100C, is contained in a piston-cylinder assembly. The
water undergoes a process to the corresponding saturated vapor
(state 2), during which the piston moves freely in the cylinder. If
the change of state is brought about by heating the water as it
undergoes an internally reversible process at constant pressure and
temperature, determine (a) heat transfer using first law of
thermodynamics in kJ/kg and (b) heat transfer using second law of
thermodynamics...

A sample containing 2.50 moles of He (1 bar, 345 K ) is mixed
with 1.75 mol of Ne (1 bar, 345 K ) and 1.50 mol of Ar (1 bar, 345
K ).
Calculate
ΔGmixing.
Calculate
ΔSmixing.
Express your answer with the
appropriate units. Calculate ΔA for the isothermal
compression of 3.11 mol of an ideal gas at 321 K from an initial
volume of 60.0 L to a final volume of 20.5 L. Does it matter
whether the...

Calculate the entropy production for the
piston-cylinder power producing cycle you analyzed in,
problem 1.
Problem 1: A piston cylinder device has a
volume of 0.04 m3 and initially contains air at 293 K
and 1 bar. This device is used to perform a cycle in which the gas
is heated at a constant volume until the temperature reaches 1000
K. The air is allowed to expand following an isothermal process
until the volume is 3.5 times the original volume....

1 kg of water in a piston cylinder arrangement is initially in a
saturated liquid state at 1 bar. It undergoes expansion at constant
pressure due to external heat supply to it, to a final state of
saturated vapor.
(i) What is the initial temperature of water in C? (a) 93.50 (b)
96.71 (c) 99.63 (d) 111.4 (e) 12.2
(ii) What is the change in enthalpy of water (kJ/kg-K)? (a)
417.46 (b) 2258.0 (c) 2675.5 (d) 2506.1
(iii) What is...

A 1.79 mol diatomic gas initially at 274 K undergoes this cycle:
It is (1) heated at constant volume to 707 K, (2) then allowed to
expand isothermally to its initial pressure, (3) then compressed at
constant pressure to its initial state. Assuming the gas molecules
neither rotate nor oscillate, find (a) the net energy transferred
as heat to the gas (excluding energy transferred as heat out of the
gas), (b) the net work done by the gas, and (c)...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 14 minutes ago

asked 19 minutes ago

asked 32 minutes ago

asked 37 minutes ago

asked 49 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago