Question

Given: 2.0m diameter steel pipe, density = 2000kg/m^3 and  μ= 10^-2 kg/m*s. What is the fluid power...

Given: 2.0m diameter steel pipe, density = 2000kg/m^3 and  μ= 10^-2 kg/m*s. What is the fluid power required to pump water at 10^5 kg/hr.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2 m long pipe with a diameter of 30 cm carries a fluid of density...
A 2 m long pipe with a diameter of 30 cm carries a fluid of density 1051 kg/m3 and kinematic viscosity of 1.72 X 10^-5 m2/s . If the fluid in the center of the pipe is traveling at 5.5 m/s, what is the force needed to keep the pipe in place. Use the Blassius solution where needed.
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and...
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.31 m/s and the pipe d1 diameter is 10.3cm . At Location 2, the pipe diameter d2 is 17.5 cm . At Location 1, the pipe is triangle y= 9.31m higher than it is at Location 2. Ignoring viscosity, calculate the difference between the fluid pressure at Location 2 and the fluid pressure...
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter...
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter 0.21 m . The diameter of the pipe decreases to 0.05 m at its exit end. The exit end of the pipe is 5.43 m lower than the entrance of the pipe, and the pressure at the exit of the pipe is 1.5 atm. Applying Bernoulli’s principle, what is the pressure P1 at the entrance end of the pipe? Assume the viscosity of the...
A liquid of density 1343 kg / m 3 flows with speed 2 . 21 m...
A liquid of density 1343 kg / m 3 flows with speed 2 . 21 m / s into a pipe of diameter 0 . 21 m . The diameter of the pipe decreases to 0 . 05 m at its exit end. The exit end of the pipe is 4 . 41 m lower than the entrance of the pipe, and the pressure at the exit of the pipe is 1 . 2 atm Applying Bernoulli’s principle, what is...
A hollow steel sphere (the density of steel is 7820 kg/m3) with an internal diameter of...
A hollow steel sphere (the density of steel is 7820 kg/m3) with an internal diameter of 10 cm and a thickness of 7mm is attached to a wooden cylinder (the wood has a density of 900 kg/m3) with a length 50 cm and a diameter of 20 cm. The inside of the sphere is filled with a fluid. If the system is neutrally buoyant in water with a density of 998.2 kg/m3, determine the density of the fluid inside the...
A liquid of density 1270 kg/m31270 kg/m3 flows steadily through a pipe of varying diameter and...
A liquid of density 1270 kg/m31270 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.61 m/s9.61 m/s and the pipe diameter ?1d1 is 10.7 cm10.7 cm. At Location 2, the pipe diameter ?2d2 is 16.1 cm16.1 cm. At Location 1, the pipe is Δ?=8.31 mΔy=8.31 m higher than it is at Location 2. Ignoring viscosity, calculate the difference Δ?ΔPbetween the fluid pressure at Location 2 and the...
A liquid of density 1150 kg/m31150 kg/m3 flows steadily through a pipe of varying diameter and...
A liquid of density 1150 kg/m31150 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.83 m/s9.83 m/s and the pipe diameter ?1d1 is 11.3 cm.11.3 cm. At Location 2, the pipe diameter ?2d2 is 15.5 cm.15.5 cm. At Location 1, the pipe is Δ?=8.17 mΔy=8.17 m higher than it is at Location 2. Ignoring viscosity, calculate the difference Δ?ΔP between the fluid pressure at Location 2 and...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.15 m/s and the pipe diameter is 11.5 cm. At location 2 the pipe diameter is 17.3 cm. At location 1 the pipe is 9.89 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.19 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.79 m/s and the pipe diameter is 10.7 cm. At location 2 the pipe diameter is 14.1 cm. At location 1 the pipe is 8.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.37 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.47 m/s and the pipe diameter is 11.1 cm. At location 2 the pipe diameter is 17.1 cm. At location 1 the pipe is 9.37 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.