Question

Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and...

Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and leaving at 150 kPa, 200°C, and 210 m/s. The inlet of the turbine is 105 cm2 . Assume that air is an ideal gas with constant specific heat. Given CP = 1.013 kJ/kgK. Estimate: i) the mass flow rate of the air ii) the power output of the turbine, in kW

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of...
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of the steam are 6 MPa, 400 °C and 119 cm2 . The exit conditions are 40 kPa, 92 percent quality, 50 m/s and 20 kg/s. Determine the power output.
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power output of the turbine is 6 MW, determine: i)          Mass flowrate of the steam flowing through the turbine.                                      ii)        The isentropic efficiency of the turbine.
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the...
Air is expanded isentropically in an adiabatic turbine, to produce 115 kW of power. If the mass flow rate is 0.75 kg/s, and the air at the exit is 500 K and 155 kPa, then what is the temperature and pressure at the inlet of the turbine? (a) The temperature is? K (b) The pressure is? kPa NOTE: Do NOT approximate the air as having a constant specific heat.
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine...
Consider an adiabatic turbine. At steady mass flow rate of 10 kg/s, steam enter the turbine at 4.5 MPa, 600°c and 85 m/s and leaves the turbine at 40 kPa, quality of 0.8 and 50 m/s. Determine : a) the power output b) the turbine inlet area
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
air pressure of 103 kPa., entering the compressor at a temperature of 15 degrees Celsius and...
air pressure of 103 kPa., entering the compressor at a temperature of 15 degrees Celsius and a low speed. 1 mPa pressure, 336 degrees Celsius temperature and 106 m / s speed is coming out of the compressor. The compressor is cooled by air at a temperature of 15 degrees Celsius and 26 kW. The power input to the compressor is 298 kW. (cp= 1.005kj/kgK , R=0.287 kj/kgK) a) Find the mass flow of air b) calculate the irreversibility in...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s and its mass flow rate is 5,000 kg/h. The steam leaves the turbine at a point 3m below the turbine inlet with a velocity of 350 m/s. The heat loss from the turbine is 100,000 kJ/hr and the shaft work produced is 950hp. A small portion of the exhaust steam from the turbine is passed through a throttling valve and discharges at atmospheric pressure....
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...