Question

What is the purpose of including baffles on the shell side of the heat exchanger? Consider...

What is the purpose of including baffles on the shell side of the heat exchanger? Consider the impact on velocity, Reynolds number, and turbulence, as well as prevention of flow channeling.

Homework Answers

Answer #1

Solution :

The main roles of a baffle in a shell and tube heat exchanger are to:

Hold tubes in position (preventing sagging), both in production and operation.

Prevent the effects of steam starvation, which is increased with both fluid velocity and the length of the exchanger.

Direct shell-side fluid flow along tube field.

Increase the turbulence in shell side fluid.

prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field.

All the best buddy please upvote it

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic Stream Cooling Water inlet Temperature (oC) 85 20 outlet Temperature (oC) 40 35 Mass Flowrate x heat Capacity (kW/oC) 85.2 Hot Stream cold stream (Cooling water) Heat Capacity (J/kg K) 2840 4193 Density (kg/m3) 750 999 Viscosity (cP) 0.34 1.016 Thermal conductivity (W/m.K) 0.19 0.594 Fouling Factor (m2.oC/W 0.00018 0.000176 ? The cooling water is allocated to the tube-side of the exchanger. ? It...
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K)....
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K). It is used to cool distilled water from 34oC to 29oC using water which flows inside tubes with an outer diameter of 19 mm and an inner diameter of 16 mm. The number of tubes in the shell is 160 (80 per pass). The mass flow rate of distilled water in the shell is 76180 kg/h. The cold water enters the heat exchanger at...
Question 2. Answer all parts of this question a) A shell and tube heat exchanger is...
Question 2. Answer all parts of this question a) A shell and tube heat exchanger is to heat 10,000 kg h–1 of water from 16 to 84°C using hot oil entering at 160°C and leaving at 92°C. The oil will flow through the shell of the heat exchanger. The water will flow through 11 brass tubes of 22.9 mm inside diameter and 25.4 mm outside diameter, with thermal conductivity 137 W m–1 K–1, with each tube making two passes through...
The fluid in a heat exchanger in a process plant needs to be warmed up prior...
The fluid in a heat exchanger in a process plant needs to be warmed up prior to having process startup. The shell side of the heat exchanger contains the process fluid (water) while the tube side is supplied with steam at 150°C to facilitate the heating. Assume the exterior is well insulated such that heat losses are negligible. a) Derive the ODE and analytically solve for the function that describes the temperature of the fluid in the heat exchanger with...
Heat Exchanger Design Question: In a Cross-Flow heat exchanger, is "R" dependent on the number of...
Heat Exchanger Design Question: In a Cross-Flow heat exchanger, is "R" dependent on the number of tubes in the exchanger? If so, what formula could be used to determine R? R is the total thermal resistance if it is the total, would the number of tubes need to be taken into account?
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59...
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59 in a refinery. The therminol 59 enters the tubes at a mass flow rate of 0.87 kg/s and changes in temperature from 93◦C to 49◦C. Water is the other fluid. It enters the shell at a mass flow rate of 1.20 kg/s, and changes in temeperture from 23◦C to 37.1◦C. Determine the following: (a) (10 pts) The heat transfer between the two fluids (b)...
A horizontal shel-and-tube heat exchanger with two tube passes and one shell pass is being used...
A horizontal shel-and-tube heat exchanger with two tube passes and one shell pass is being used to heat 9 kg/s of 100% ethanol from 25 to 65 C at atmospheric pressure. The ethanol pasar through the inside of the tubes, and saturated steam at 115 C condenses an the shell of the tubes. The tubes are atell with an OD of 0.019 m and a BWG of 14. The exchanger contains a total of 100 tubes (50 tubes per pass)....
The condenser of a large steam power plant is a heat exchanger in which steam is...
The condenser of a large steam power plant is a heat exchanger in which steam is condensed to liquid water. Assume the condenser to be a parallel flow shell-and-tube heat exchanger consisting of a single shell and 10,000 tubes, each executing two passes. The tubes are of thin wall construction with D = 30 mm and the steam condenses on their outer surface. The heat transfer rate that must be effected by the exchanger is Q = 2 × 10^9...
What are possible reasons that the heat duty of the tube side differs from that of...
What are possible reasons that the heat duty of the tube side differs from that of the annular side in a double pipe heat exchanger?