Question

The following two problems examine a Rankine cycle. Saturated steam at 250 °C enters the turbine....

The following two problems examine a Rankine cycle. Saturated steam at 250 °C enters the turbine. The condenser operates at 40 °C. The efficiency of the turbine is 75%.

Calculate the efficiency of the Rankine cycle.

Calculate the mass flow rate of water needed to produce a net power of 1 MW (= 1000 kW).

Homework Answers

Answer #1

Solution:

thank you

Wish you all the best buddy please upvote it ?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400 lbf/in2 and 1000°F. The condenser pressure is 2 lbf/in.2 The net power output of the cycle is 350 MW. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser. a) Determine the mass flow rate of steam, in lb/h. b) The rate of heat transfer, in Btu/h, to the working fluid passing through the...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. a.)Determine the quality of the steam at the turbine exit. Use steam tables. b.)Determine the thermal efficiency of the cycle. c.)Determine the mass flow rate of the steam
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...
Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the quality of the steam at the turbine exit. Use steam tables. (You must provide an answer before moving on to the next part.) a.)The quality of the steam at the turbine exit is? b.)Determine the thermal efficiency of the cycle.The thermal efficiency of...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that...
A steam power plant of 15 MW operates on the simple ideal Rankine cycle such that the water leaves the condenser as a saturated liquid at a pressure of 15 kPa. The pressure of the water leaving the pump is 5.0 MPa, and the temperature of the steam entering the turbine is 650 ºC. (a) Show the sketch and cycle on a T-s diagram. Determine (b) the thermal efficiency of the cycle and (c) the mass flow rate in kg/s....
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. In this case, what is the amount of heat from the Condenser to the surrounding environment for the unit mass? be quıck
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine...
In a steam plant operating according to an ideal Rankine cycle, water vapor enters the turbine at 3.0 MPa pressure and 600 oC temperature and exits the turbine with 100 kPa and 0.8 degree of dryness. Heat is thrown from the condenser to the surrounding environment and the water is provided to be saturated liquid at 100 kPa. So what is the net turbine job for the unit mass? be quıck
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser...
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser pressure at 1 psia. There are three feedwater heaters placed optimally as follows: (a) the high-pressure heater is of the closed type with drains cascaded backward; (b) the intermediate-pressure heater is of the open type; (c) the low- pressure heater is of the closed type with drains pumped forward. Each of the turbine sections has the same polytropic efficiency of 90 percent. The pumps...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5...
Steam enters the turbine of an ideal Rankine cycle power plant with a pressure of 12.5 MPa and a temperature of 600°C and expands adiabatically to condenser pressure equal to 30 kPa . Please answer the following: a. Represent the cycle on a T-s diagram, indicate the values of the isobars and temperature and entropy on the axes. b. Compute the thermal efficiency for this cycle.
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. a) Draw and label the T-s diagram for this cycle b) Determine the cycle’s thermal efficiency c) Determine the mass flow rate of the steam in the boiler (kg/h) d) Determine...