Question

An ideal gas is compressed isothermally in a closed and frictionless piston/cylinder apparatus to 2.5 times...

An ideal gas is compressed isothermally in a closed and frictionless piston/cylinder apparatus to 2.5 times its initial pressure, consuming in the process 2.2 kJ mol−1 of work. Calculate the temperature of the gas inside the cylinder.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of...
A closed, cylindrical piston contains an ideal gas initially at a volume of 1.00L, temperature of 25.0ºC and internal pressure of 1.00 bar. The gas is compressed by applying an external pressure of 1.5bar to a volume of 0.200L. a. (20 pts) What is the work done in compressing the gas? b. (15 pts) If the above piston had diathermal walls and the process occurred isothermally, how much heat would be exchanged? Show steps and Ill rate! Thanks for the...
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of...
A cylinder with a moveable piston holds 1.20 mol of argon at a constant temperature of 295 K. As the gas is compressed isothermally, its pressure increases from 101 kPa to 145 kPa. (a) Find the final volume of the gas. (answer in: m3) (b) Find the work done by the gas. (answer in: kJ) (c) Find the heat added to the gas. (.. kJ)
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
An ideal gas is enclosed in a cylinder with a movable piston on top of it....
An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8,000 g and an area of 5.00 cm2 and is free to slide up and down, keeping the pressure of the gas constant. (a) How much work is done on the gas as the temperature of 0.155 mol of the gas is raised from 30.0°C to 330°C? _______ J
Three kilograms (3.0 kg) of saturated steam at 162oC is held in a closed piston-cylinder apparatus...
Three kilograms (3.0 kg) of saturated steam at 162oC is held in a closed piston-cylinder apparatus with a weighted piston that exerts a constant force on the steam. The piston-cylinder apparatus loses energy to the surroundings such that at a certain point 50% of the steam has condensed to a saturated liquid inside the cylinder (NOTE: the vapor and liquid are still saturated at the new condition). a. For the process described above, determine the heat exchange with the surroundings....
One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200...
One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200 K , Pi=0.5 MPa to Pf=5 MPa by following paths:. ADIABATIC path ISOTHERMAL path Calculate ΔU, ΔH, Q and WEC for both paths. NOTE: Keep the answers in terms of ‘R’.
A fire breaks out and increases the Kelvin temperature of a cylinder of compressed gas by...
A fire breaks out and increases the Kelvin temperature of a cylinder of compressed gas by a factor of 8. What is the final pressure of the gas relative to its initial pressure? _______ *p1 A quantity of gas in a piston cylinder has a volume of 0.413 m3 and a pressure of 200 Pa. The piston compresses the gas to 0.275 m3 in an isothermal (constant-temperature) process. What is the final pressure of the gas? _______pa