Question

Air at 10º C and 80kPa enters the diffuser of a jet engine steadily with a...

Air at 10º C and 80kPa enters the diffuser of a jet engine steadily with a velocity of. 200 m/s. The inlet area of the diffuser is 0.5 m. 2 . The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine a).the mass flow rate of the air b).the temperature of the air leaving the diffuser.

Homework Answers

Answer #1

Given data

Pressure P = 80 kPa

Temperature T = 10°C = 283 K

Velocity V = 200 m/s

Area of diffuser = 0.5 m2

Gas constant R =0.287 kPa-m3 /kg-K

Part a

Calculate the specific volume

= R x T/P

= 0.287 kPa-m3 /kg-K x 283 K / 80 kPa

= 1.015 m3/kg

Mass flow rate = velocity x Area / Specific volume

= 200 x 0.5 / 1.015

= 98.497 kg/s

Part b

At T1 = 283 K

Enthalpy, h1 = 283.14 kJ/kg

At steady state

Enthalpy in = enthalpy out

283.14 x 200 x 200 / 2 = h2

h2 = 303.14 kJ/kg

From the air properties

T2 = 303.14 K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air enters the diffuser of a jet engine operating at a steady state at a pressure...
Air enters the diffuser of a jet engine operating at a steady state at a pressure of 18 kPa, a temperature of 213 K and a velocity of 285 m/s. The air flows adiabatically through the diffuser and exits at a temperature of 240 K. Using the ideal gas model for the air, please determine the velocity of the air at the diffuser exit, in m/s.
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160...
Refrigerant-134a enters a diffuser steadily as saturated vapour at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser : determine (a- the exit velocity (b- the mass flow rate of the refrigerant. If the exit area is twice the inlet area (A2=2A1),
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of 180 m/s and leaves at 109 kPa and 22°C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2
Steam enters a diffuser at 250°C and 300kPa with an inlet velocity of 402 m/s. Steam...
Steam enters a diffuser at 250°C and 300kPa with an inlet velocity of 402 m/s. Steam leaves the diffuser at 350°C and 600kPa. The heat gain in the diffuser is 80 kW. The inlet area of the diffuser is 820 cm2. Determine the velocity and the volume flow rate of the steam at the diffuser exit.
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of 275 m/s and leaves at 85 kPa and 278C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2. Reconsider Using EES (or other) software, investigate the effect of the inlet veloc- ity on the exit velocity and the ratio of the inlet-to-exit area. Let the inlet velocity vary from 210 to 350 m/s. Plot...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
A jet engine is operating at an altitude of 7000 m. The mass of air passing...
A jet engine is operating at an altitude of 7000 m. The mass of air passing through the engine is 46 kg/s and the heat addition in the combustion chamber is 500 kJ/kg. The cross-sectional area of the combustion chamber is 0.5 m2, and the air enters the chamber at a pressure of 80 kPa and a temperature of 80°C. After the combustion chamber, the products of combustion, which can be assumed to have the properties of air, are expanded...
1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the...
1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the propulsive force. The enthalpy and velocity of the gases at the nozzle entrance are 1200 kJ/kg and 200 m/s respectively. The enthalpy of the gas at exit is 900 kJ/kg. If the heat loss from the nozzle is negligible, determine the velocity of the gas jet at exit from the nozzle. 2. For question 1, if the diameter of the nozzle at exit is...
An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with...
An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with a velocity of 5 m/s. The ideal gas gains heat as it flows and leaves the pipe at 77C and 225 kPa. The gas constant of the ideal gas is R=0.285 kJ/kg.K. Determine: a) the volume flow rate at the inlet b) the mass flow rate c) the velocity at the exit
Air enters a diffuser at 20oC and 80 m/s, and exits at 25oC and 5 m/s....
Air enters a diffuser at 20oC and 80 m/s, and exits at 25oC and 5 m/s. The mass flow rate of the air is 1.5 kg/s. Assuming the air behaves as an ideal gas with constant specific heats, what is the heat transfer rate for the diffuser?