Question

Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...

Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table:

SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE
1 15 0
2 15 2
3 15 0
4 15 3
5 15 1
6 15 3
7 15 1
8 15 0
9 15 0
10 15 0
a.

Determine the p−p−, Sp, UCL and LCL for a p-chart of 95 percent confidence (1.96 standard deviations). (Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 3 decimal places.)

  p−p−   
  Sp   
  UCL   
  LCL   
b. What comments can you make about the process?
Process is in statistical control
Process is out of statistical control

Homework Answers

Answer #1

Solution:

Z = 1.96

Number of samples, N = 10

Sample size, n = 15

(a) P = Total number of defective items in the sample / (Number of samples x Sample size)

P = (2 + 3 + 1 + 3 + 1) / (10 x 15)

P = 0.067

Sp = SQRT [P x (1 - P)] / n

Sp = SQRT [0.067 x (1 - 0.067)] / 15

Sp = 0.065

UCL = P + [Z x Sp]

UCL = 0.067 + [1.96 x 0.065]

UCL = 0.194

LCL = P - [Z x Sp]

LCL = 0.067 - [1.96 x 0.065]

LCL = - 0.060 or 0 (Number of defects cannot be negative)

LCL = 0

(b) Since, the number of defective items in few of the samples is more than the Upper Control Limit (UCL = 0.194), the process is out of statistical control.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 1 2 15 1 3 15 3 4 15 1 5 15 0 6 15 0 7 15 2 8 15 1 9 15 2 10 15 1 a. Determine the p−p− , Sp, UCL and...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 0 2 15 0 3 15 0 4 15 2 5 15 0 6 15 3 7 15 1 8 15 0 9 15 3 10 15 1 a. Determine the p−p−, Sp, UCL and LCL...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 2 2 15 2 3 15 2 4 15 0 5 15 2 6 15 1 7 15 3 8 15 2 9 15 1 10 15 3 a. Determine the p−p− , Sp, UCL and...
A process produces parts that are determined to be usable or unusable. The process average defective...
A process produces parts that are determined to be usable or unusable. The process average defective rate is 1%. You plan to monitor this process by taking samples of 400 parts. Sample: 1 2 3 4 5 6 7 8 9 10 Defectives: 6 2 5 6 0 4 8 0 2 8   (A.) What is your p chart UCL? (B.) What is your p chart LCL? (C.) Is this process in control or not?
Random samples of size n = 410 are taken from a population with p = 0.09....
Random samples of size n = 410 are taken from a population with p = 0.09. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round the value for the centerline to 2 decimal places and the values for the UCL and LCL to 3 decimal places.) Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart if samples of 290 are used....
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 185 items were found to be defective. (a) What is an estimate of the proportion defective when the process is in control? (b) What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) (c) Compute the upper and lower...
Random samples of size n = 200 are taken from a population with p = 0.08....
Random samples of size n = 200 are taken from a population with p = 0.08. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯chart b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯ chart if samples of 120 are used. c. Discuss the effect of the sample size on the control limits. The control limits have a ___ spread with smaller...
Edit question The results of inspection of samples of a product taken over the past 5...
Edit question The results of inspection of samples of a product taken over the past 5 days are given below. Sample size for each day has been 100: Day        1             2             3             4             5 Defectives           2             6             14           3             7 Determine the UCL for this chart Determine the LCL for this chart Is this process in control?
Random samples of size n= 400 are taken from a population with p= 0.15. a.Calculate the...
Random samples of size n= 400 are taken from a population with p= 0.15. a.Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p chart. b.Suppose six samples of size 400 produced the following sample proportions: 0.06, 0.11, 0.09, 0.08, 0.14, and 0.16. Is the production process under control?