Question

The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...

The null and alternate hypotheses are:

H0 : μ1 = μ2
H1 : μ1μ2

A random sample of 9 observations from one population revealed a sample mean of 24 and a sample standard deviation of 3.7. A random sample of 6 observations from another population revealed a sample mean of 28 and a sample standard deviation of 4.6.

At the 0.01 significance level, is there a difference between the population means?

a. State the decision rule.

b.Compute the pooled estimate of the population variance.

c. Compute the test statistic.

d. State your decision about the null hypothesis.

e. The p-value is

Homework Answers

Answer #1

Solution:
Null hypothesis is H0: mean 1 = mean 2
Alternate hypothesis H1: mean1 is not equal to mean 2
Here degree of freedom = (6+6-2) = 10
this is two tailed test and alpha=0.01
so tcritical value is +/-3.1692
We will reject null hypothesis if test statistic is greater than 3.1692 or less than -3.1692
Pooled estimate varinace can be estimated as
Sp^2 = ((n1-1)S1^2 +(n2-1)S2^2)/(n1-1)+(n2-1) = ((6-1)*3.7*3.7 +(6-1)*4.6*4.6)/((6-1)+(6-1) = 174.25/10 = 17.425

test statistic = (X1bar - X2bar) - (mean1-Mean2) / Sqrt(Sp^2 *((1/n1)+(1/n2))
= (24-28)/sqrt(17.425*(1/6 +(1/6)
= -4/2.41 = -1.66

Here we can see that the test statistic is in between +/- 3.1692 so we are failed to reject the null hypothesis, and this result is not significnat, we dont have enough evidence for alternate hypothesis.

p-value is 0.1279

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 24 and a sample standard deviation of 3.8. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 3.7. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 29 and a sample standard deviation of 4.5. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 8 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.9. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 4.4. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
he null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
he null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 24 and a sample standard deviation of 4.6. A random sample of 8 observations from another population revealed a sample mean of 29 and a sample standard deviation of 4.1. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 29 and a sample standard deviation of 4.5. At the 0.01 significance level, is there a difference between the population means? a. State the decision rule. (Negative amounts...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 22 and a sample standard deviation of 3.9. A random sample of 9 observations from another population revealed a sample mean of 27 and a sample standard deviation of 4.1. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 27 and a sample standard deviation of 3.6. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 23 and a sample standard deviation of 2.5. A random sample of 5 observations from another population revealed a sample mean of 25 and a sample standard deviation of 2.7. At the 0.10 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are:    H0 : μ1 = μ2 H1 : μ1 ≠...
The null and alternate hypotheses are:    H0 : μ1 = μ2 H1 : μ1 ≠ μ2    A random sample of 12 observations from Population 1 revealed a sample mean of 22 and sample deviation of 4.5. A random sample of 4 observations from Population 2 revealed a sample mean of 23 and sample standard deviation of 4.8. The underlying population standard deviations are unknown but are assumed to be equal. At the .05 significance level, is there a...
Exercise 11-8 (LO11-2) The null and alternate hypotheses are: H0 : μ1 = μ2 H1 :...
Exercise 11-8 (LO11-2) The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 15 observations from the first population revealed a sample mean of 350 and a sample standard deviation of 12. A random sample of 17 observations from the second population revealed a sample mean of 342 and a sample standard deviation of 15. At the 0.10 significance level, is there a difference in the population means? Is this...