Solve a transportation problem using the method of multipliers.
The transportation problem is solved using vogel approximation
method of multipliers-
Total number of supply
constraints : 3
Total number of demand
constraints : 3
Problem Table is
D1 | D2 | D3 | Supply | ||
S1 | 4 | 8 | 9 | 150 | |
S2 | 12 | 8 | 11 | 100 | |
S3 | 10 | 6 | 9 | 250 | |
Demand | 50 | 150 | 300 |
Table 1
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4 | 8 | 9 | 150 | 4=8-4 | |
S2 | 12 | 8 | 11 | 100 | 3=11-8 | |
S3 | 10 | 6 | 9 | 250 | 3=9-6 | |
Demand | 50 | 150 | 300 | |||
Column Penalty |
6=10-4 | 2=8-6 | 0=9-9 |
The maximum penalty, 6,
occurs in column D1.
The minimum
cij
in this column is
c11 = 4.
The maximum allocation in
this cell is min(150,50) = 50.
It satisfy demand of
D1 and adjust the supply of
S1 from 150 to 100 (150 - 50 =
100).
Table 2
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4(50) | 8 | 9 | 100 | 1=9-8 | |
S2 | 12 | 8 | 11 | 100 | 3=11-8 | |
S3 | 10 | 6 | 9 | 250 | 3=9-6 | |
Demand | 0 | 150 | 300 | |||
Column Penalty |
-- | 2=8-6 | 0=9-9 |
The maximum penalty, 3,
occurs in row S3.
The minimum
cij
in this row is
c32 = 6.
The maximum allocation in
this cell is min(250,150) = 150.
It satisfy demand of
D2 and adjust the supply of
S3 from 250 to 100 (250 - 150 =
100).
Table3
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4(50) | 8 | 9 | 100 | 9 | |
S2 | 12 | 8 | 11 | 100 | 11 | |
S3 | 10 | 6(150) | 9 | 100 | 9 | |
Demand | 0 | 0 | 300 | |||
Column Penalty |
-- | -- | 0=9-9 |
The maximum penalty, 11,
occurs in row S2.
The minimum
cij
in this row
is c23 = 11.
The maximum
allocation in this cell is min(100,300) = 100.
It satisfy
supply of S2 and adjust the demand
of D3 from 300 to 200 (300 -
100 = 200).
Table
4
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4(50) | 8 | 9 | 100 | 9 | |
S2 | 12 | 8 | 11(100) | 0 | -- | |
S3 | 10 | 6(150) | 9 | 100 | 9 | |
Demand | 0 | 0 | 200 | |||
Column Penalty |
-- | -- | 0=9-9 |
The maximum
penalty, 9, occurs in row S1.
The
minimum cij in this row is
c13 = 9.
The maximum allocation in this cell is
min(100,200) = 100.
It satisfy supply of
S1 and adjust the demand of
D3 from 200 to 100 (200 - 100 =
100).
Table
5
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4(50) | 8 | 9(100) | 0 | -- | |
S2 | 12 | 8 | 11(100) | 0 | -- | |
S3 | 10 | 6(150) | 9 | 100 | 9 | |
Demand | 0 | 0 | 100 | |||
Column Penalty |
-- | -- | 9 |
The maximum
penalty, 9, occurs in row S3.
The
minimum cij in this row is
c33 = 9.
The maximum
allocation in this cell is min(100,100) = 100.
It satisfy
supply of S3 and demand of
D3.
Initial
feasible solution is
D1 | D2 | D3 | Supply | Row Penalty | ||
S1 | 4(50) | 8 | 9(100) | 150 | 4 | 1 | 9 | 9 | -- | | |
S2 | 12 | 8 | 11(100) | 100 | 3 | 3 | 11 | -- | -- | | |
S3 | 10 | 6(150) | 9(100) | 250 | 3 | 3 | 9 | 9 | 9 | | |
Demand | 50 | 150 | 300 | |||
Column Penalty |
6 -- -- -- -- |
2 2 -- -- -- |
0 0 0 0 9 |
The minimum
total transportation cost =4×50+9×100+11×100+6×150+9×100=4000
Here, the
number of allocated cells = 5 is equal to m + n - 1 = 3 + 3 - 1 =
5. This solution is
non-degenerate
Get Answers For Free
Most questions answered within 1 hours.