El toro grande restaurant advertises that customers will have their orders taken with three minutes of being seated. Management wants to monitor average times, as it is such an important guarantee for business. Construct x? - and s-charts for the data given in the worksheet pro07-05 in the ch07data.xlsx file for this chapter.
a. compute the sample means and the average standard deviation, calculate the control limits, and plot them on control charts.
b. does the process appear to be in statistical control? Why or why not?
c. calculate the process capability statistics, using three minutes as the upper tolerance limit and zero as the lower tolerance limit. What recommendation would you make to management concerning the process, based on your findings?
El Toro Grande Restaurante | |||||
1 | 1.22 | 1.54 | 1.53 | 1.86 | 1.49 |
2 | 1.48 | 1.18 | 1.41 | 1.29 | 1.61 |
3 | 2.12 | 1.76 | 1.29 | 1.78 | 1.74 |
4 | 1.34 | 1.22 | 1.29 | 1.69 | 1.42 |
5 | 1.11 | 1.21 | 1.34 | 1.95 | 1.22 |
6 | 0.73 | 1.97 | 1.51 | 1.67 | 1.77 |
7 | 1.20 | 1.46 | 1.05 | 1.14 | 1.80 |
8 | 1.72 | 1.58 | 1.79 | 1.95 | 0.83 |
9 | 1.23 | 1.39 | 1.57 | 1.49 | 1.58 |
10 | 0.70 | 0.94 | 1.14 | 1.54 | 1.81 |
11 | 1.50 | 1.83 | 1.60 | 1.15 | 1.79 |
12 | 1.72 | 1.61 | 1.63 | 1.84 | 1.95 |
13 | 1.64 | 1.13 | 1.60 | 1.87 | 1.36 |
14 | 0.73 | 1.39 | 1.39 | 1.85 | 1.86 |
15 | 1.72 | 1.42 | 1.59 | 0.70 | 1.55 |
16 | 1.91 | 2.08 | 1.64 | 1.77 | 1.60 |
17 | 1.63 | 1.57 | 0.95 | 2.02 | 1.69 |
18 | 1.53 | 1.47 | 2.05 | 1.19 | 1.52 |
19 | 1.18 | 1.78 | 1.37 | 1.53 | 1.30 |
20 | 1.74 | 2.14 | 1.24 | 0.92 | 1.34 |
21 | 1.47 | 1.89 | 1.53 | 2.28 | 1.84 |
22 | 1.68 | 1.35 | 1.26 | 1.58 | 1.63 |
23 | 0.99 | 1.57 | 1.45 | 1.50 | 1.98 |
24 | 1.92 | 1.01 | 0.93 | 1.68 | 1.96 |
25 | 2.15 | 1.57 | 1.75 | 1.72 | 1.63 |
26 | 1.13 | 0.99 | 1.27 | 1.35 | 1.37 |
27 | 1.87 | 1.74 | 0.89 | 1.61 | 1.77 |
28 | 0.99 | 1.36 | 0.89 | 1.54 | 2.01 |
29 | 1.75 | 1.96 | 1.57 | 1.67 | 2.31 |
30 | 1.59 | 2.15 | 1.68 | 1.42 | 1.50 |
31 | 0.93 | 1.65 | 1.29 | 1.02 | 1.48 |
32 | 1.40 | 1.98 | 1.54 | 0.97 | 1.62 |
33 | 1.69 | 1.62 | 1.47 | 1.81 | 0.97 |
34 | 1.98 | 1.26 | 1.32 | 1.17 | 1.39 |
35 | 1.73 | 1.42 | 2.06 | 1.27 | 1.34 |
36 | 1.45 | 1.57 | 1.70 | 1.32 | 1.26 |
37 | 1.98 | 1.61 | 1.45 | 1.46 | 2.19 |
38 | 1.46 | 1.46 | 1.70 | 1.56 | 1.93 |
39 | 1.80 | 1.34 | 1.46 | 1.91 | 1.10 |
40 | 1.04 | 1.29 | 1.30 | 1.77 | 1.13 |
(a) Step 1: Calculate X? and s (std deviation) for each subgroup. Excel formula AVERAGE() can be used for calculation of mean and STDEV() for standard deviation calculation
Sample | obs 1 | obs 2 | obs 3 | obs 4 | obs 5 | Xbar | s |
1 | 1.22 | 1.54 | 1.53 | 1.86 | 1.49 | 1.528 | 0.227 |
2 | 1.48 | 1.18 | 1.41 | 1.29 | 1.61 | 1.394 | 0.167 |
3 | 2.12 | 1.76 | 1.29 | 1.78 | 1.74 | 1.738 | 0.295 |
4 | 1.34 | 1.22 | 1.29 | 1.69 | 1.42 | 1.392 | 0.182 |
5 | 1.11 | 1.21 | 1.34 | 1.95 | 1.22 | 1.366 | 0.336 |
6 | 0.73 | 1.97 | 1.51 | 1.67 | 1.77 | 1.530 | 0.477 |
7 | 1.20 | 1.46 | 1.05 | 1.14 | 1.80 | 1.330 | 0.304 |
8 | 1.72 | 1.58 | 1.79 | 1.95 | 0.83 | 1.574 | 0.437 |
9 | 1.23 | 1.39 | 1.57 | 1.49 | 1.58 | 1.452 | 0.146 |
10 | 0.70 | 0.94 | 1.14 | 1.54 | 1.81 | 1.226 | 0.449 |
11 | 1.50 | 1.83 | 1.60 | 1.15 | 1.79 | 1.574 | 0.273 |
12 | 1.72 | 1.61 | 1.63 | 1.84 | 1.95 | 1.750 | 0.144 |
13 | 1.64 | 1.13 | 1.60 | 1.87 | 1.36 | 1.520 | 0.283 |
14 | 0.73 | 1.39 | 1.39 | 1.85 | 1.86 | 1.444 | 0.462 |
15 | 1.72 | 1.42 | 1.59 | 0.70 | 1.55 | 1.396 | 0.404 |
16 | 1.91 | 2.08 | 1.64 | 1.77 | 1.60 | 1.800 | 0.198 |
17 | 1.63 | 1.57 | 0.95 | 2.02 | 1.69 | 1.572 | 0.389 |
18 | 1.53 | 1.47 | 2.05 | 1.19 | 1.52 | 1.552 | 0.311 |
19 | 1.18 | 1.78 | 1.37 | 1.53 | 1.30 | 1.432 | 0.232 |
20 | 1.74 | 2.14 | 1.24 | 0.92 | 1.34 | 1.476 | 0.473 |
21 | 1.47 | 1.89 | 1.53 | 2.28 | 1.84 | 1.802 | 0.325 |
22 | 1.68 | 1.35 | 1.26 | 1.58 | 1.63 | 1.500 | 0.184 |
23 | 0.99 | 1.57 | 1.45 | 1.50 | 1.98 | 1.498 | 0.353 |
24 | 1.92 | 1.01 | 0.93 | 1.68 | 1.96 | 1.500 | 0.496 |
25 | 2.15 | 1.57 | 1.75 | 1.72 | 1.63 | 1.764 | 0.227 |
26 | 1.13 | 0.99 | 1.27 | 1.35 | 1.37 | 1.222 | 0.160 |
27 | 1.87 | 1.74 | 0.89 | 1.61 | 1.77 | 1.576 | 0.395 |
28 | 0.99 | 1.36 | 0.89 | 1.54 | 2.01 | 1.358 | 0.451 |
29 | 1.75 | 1.96 | 1.57 | 1.67 | 2.31 | 1.852 | 0.293 |
30 | 1.59 | 2.15 | 1.68 | 1.42 | 1.50 | 1.668 | 0.286 |
31 | 0.93 | 1.65 | 1.29 | 1.02 | 1.48 | 1.274 | 0.303 |
32 | 1.40 | 1.98 | 1.54 | 0.97 | 1.62 | 1.502 | 0.366 |
33 | 1.69 | 1.62 | 1.47 | 1.81 | 0.97 | 1.512 | 0.327 |
34 | 1.98 | 1.26 | 1.32 | 1.17 | 1.39 | 1.424 | 0.321 |
35 | 1.73 | 1.42 | 2.06 | 1.27 | 1.34 | 1.564 | 0.328 |
36 | 1.45 | 1.57 | 1.70 | 1.32 | 1.26 | 1.460 | 0.180 |
37 | 1.98 | 1.61 | 1.45 | 1.46 | 2.19 | 1.738 | 0.331 |
38 | 1.46 | 1.46 | 1.70 | 1.56 | 1.93 | 1.622 | 0.198 |
39 | 1.80 | 1.34 | 1.46 | 1.91 | 1.10 | 1.522 | 0.333 |
40 | 1.04 | 1.29 | 1.30 | 1.77 | 1.13 | 1.306 | 0.282 |
Step 2: Calculate and s?
(b) The process seem to be in statistical control (as explained above)
(c)
USL = 3 minutes
LSL = 0 minutes
Process mean, µ =1.5178
Process Standard Deviation, ? = sbar = 0.3082
Process capability index, Cpk = MIN( (USL-µ)/3?, (µ-LSL)/3?)
= MIN( (3-1.5178)/(3*0.3082), (1.5178-0)/(3*0.3082) )
= MIN(
= MIN( 1.6031, 1.6416)
= 1.6031
Process capability ratio, Cp = (USL-LSL)/6? = (3-0)/(6*0.3082) = 1.6223
Get Answers For Free
Most questions answered within 1 hours.