Question

Air enters a 0.6m-diameter fan at 16°C, 101 kPa, and is discharged at 18°C, 105 kPa,...

Air enters a 0.6m-diameter fan at 16°C, 101 kPa, and is discharged at 18°C, 105 kPa,
with a volumetric flow rate of 0.35 m3

/s. Assuming ideal gas behavior, determine for

steady state operation
(a) the mass flow rate of air, in kg/s.
(b) the volumetric flow rate of air at the inlet, in m3
/s.

(c) the inlet and exit velocities, in m/s

Homework Answers

Answer #1

Kindly appreciate the work done by UPVOTING .. If have any doubt please ask me anytime ,, Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with...
An unknown ideal gas enters a 25 cm-diameter pipe steadily at 250 kPa and 47C with a velocity of 5 m/s. The ideal gas gains heat as it flows and leaves the pipe at 77C and 225 kPa. The gas constant of the ideal gas is R=0.285 kJ/kg.K. Determine: a) the volume flow rate at the inlet b) the mass flow rate c) the velocity at the exit
An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and...
An air turbine with inlet conditions of 500 kPa, 327 C operates in steady flow and has an actual power output of 70 kW. The discharge pressure is 100 kPa and the turbine has an efficiency of 0.8 at these operating conditions. Consider specific heats constant. a) Calculate the actual mass flow rate at the turbine exit. b) Calculate the actual turbine exit temperature. c) Show the actual and ideal processes on a T-s and P-v diagram.
3. Air with 100 kPa, 300 K flows into the insulating compressor with a flow rate...
3. Air with 100 kPa, 300 K flows into the insulating compressor with a flow rate of 2 kg/s, compressed to 1000 kPa and then discharged to the exit. The back entropy efficiency of the compressor is 82%. The gas constant of the ideal gas is the air, and the meanness of the air is , The mean ratio is k=1.4. Ignore kinetic energy and position energy. 1) Draw a schematic diagram and a T-s plot of the compressor. 2)...
1. A feedwater heater operating at steady state has two inlets and one exit. At inlet...
1. A feedwater heater operating at steady state has two inlets and one exit. At inlet 1, water vapor enters at p1 = 7 bar, T1 = 200oC with a mass flow rate of 40 kg/s. At inlet 2, liquid water at p2 = 7 bar, T2 = 40oC, density = 992.260 kg/m3 enters through an area A2 = 25 cm2. Liquid water at 7 bar with a density of 902.527 kg/m3 exits at exit 3 with a volumetric flow...
Steam enters a control volume operating at steady state at 3 bar and 160 ◦ C...
Steam enters a control volume operating at steady state at 3 bar and 160 ◦ C with a volumetric flow rate of 0.5 m3 /s. Saturated liquid leaves the control volume through exit #1 with a mass flow rate of 0.1 kg/s, and saturated vapor leaves through exit #2 at 1 bar with a velocity of 5 m/s. Determine the area of exit #2, in m2 .
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a...
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a temperature of 808 F, and a volumetric flow rate of 18 ft /s. The air exits the compressor at a pressure of 90 lbf/in^2 Heat transfer from the compressor to its surroundings occurs at a rate of 9.7 Btu per lb of air flowing. The compressor power input is 90 hp. Neglecting kinetic and potential energy effects and modeling air as an ideal gas,...
Air at 1 bar, 295 K, and a mass flow rate of 0.7 kg/s enters a...
Air at 1 bar, 295 K, and a mass flow rate of 0.7 kg/s enters a compressor operating at steady state and exits at 3 bar. During the compressing from inlet to exit, the air experiences a polytropic process as PV^n=constant. m=6, n=1.48. (1) Determine the power required by the compressor. (2) Determine the heat transfer between the compressor and the surrounding. (s) Determine the rate of exergy destruction. Kinetic and potential energy effects are negligible. Let T_0 = 300...
Air at 1 bar, 295 K, and a mass flow rate of 0.7 kg/s enters a...
Air at 1 bar, 295 K, and a mass flow rate of 0.7 kg/s enters a compressor operating at steady state and exits at 3 bar. During the compressing from inlet to exit, the air experiences a polytropic process as PV^n=constant. m=6, n=1.48 (1) Determine the power required by the compressor. (2) Determine the heat transfer between the compressor and the surrounding. (s) Determine the rate of exergy destruction. Kinetic and potential energy effects are negligible. Let T_0 = 300...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 250 kW. Determine (a) temperature at the compressor exit Investigate the effect of cooling rate from 1300 kJ/min to 1600 kJ/min in steps of 50 kJ/min on the mass...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and 1000 kPa with negligible velocity. The exit Mach number is 2 and throat area is 20 cm2. Determine: a.      The throat velocity b.      The mass flow rate c.      The exit area 2.      The nozzle now has an exit area of 4 cm2. Air enters the nozzle with a total pressure of 1200 kPa, and a total temperature of 127oC. Determine the mass flow rate for back pressure of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT