Question

A storage tank contains liquid water at 50oC and is vented to atmosphere at the top...

A storage tank contains liquid water at 50oC and is vented to atmosphere at the top (where atmospheric pressure = 101.3 kPa). The distance from the bottom of the tank to the liquid surface level is 1.55 m. What will be the absolute pressure at the bottom of the tank?

(A) 12.35 kPa (B) 116.3 kPa (C) 201.3 kPa (D) 113.65 kPa

The pressure of an ideal gas drops significantly as it flows under steady state conditions through an insulated throttle valve. Which of the following does not remain constant: (A) Temperature? (B) Specific entropy? (C) Specific internal energy? (D) Specific enthalpy?

Condensing of a refrigerant in the ideal vapour compression refrigeration cycle occurs at constant (A) Temperature (B) Pressure (C) Specific enthalpy (D) Specific entropy

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A well-insulated expansion/throttle valve is designed to operate with refrigerant R134a. It receives a liquid-gas mixture...
A well-insulated expansion/throttle valve is designed to operate with refrigerant R134a. It receives a liquid-gas mixture with a quality of 0.1 and a pressure of 400 kPa. The refrigerant leaves with a pressure of 100 kPa. Find the temperature (in Celsius) and the specific volume (m3 /kg) at the exit of the valve.
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at...
A 0.6-m3 rigid tank is filled with saturated liquid water at 170 °C. A valve at the bottom of the tank is now opened, and one-half of the total mass is withdrawn from the tank in liquid form. Heat is transferred to water from a source of 210 °C so that the temperature in the tank remains constant. Determine (a) the amount of heat transfer and (b) the reversible work and exergy destruction for this process. Assume the surroundings to...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a...
A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 200 oC and a quality of 0.4. The top of the tank contains a pressure regulating valve which maintains the vapor at constant pressure. This system undergoes a process where it is heated until all the liquid vaporizes. How much heat in (kJ) is required? You may assume there is no pressure drop in the exit line.
A tank having a volume of 0.85 m^3 initially contains water as a two-phase liquid vapor...
A tank having a volume of 0.85 m^3 initially contains water as a two-phase liquid vapor mixture at 260 C and a quality of 0.7. Saturated water vapor at 260 C is slowly withdrawn through a pressure-regulating valve at the top of the tank as energy is transferred by heat to maintain the pressure constant in the tank. This continues until the tank is filled with saturated vapor at 260 C. Determine the amount of heat transfer in kJ. Neglect...
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework....
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework. Previously, you modeled it as a Carnot cycle; now you will use the more realistic Rankine cycle. The boiler operates at 1000 kPa with a maximum temperature of 30°C. The condenser is isobaric and operates at -5°C. a. Calculate the vapor quality leaving the turbine and the specific enthalpy exiting the turbine (in kJ/kg) b. Determine the specific-work produced by the Rankine cycle turbine...
1 kg of water in a piston cylinder arrangement is initially in a saturated liquid state...
1 kg of water in a piston cylinder arrangement is initially in a saturated liquid state at 1 bar. It undergoes expansion at constant pressure due to external heat supply to it, to a final state of saturated vapor. (i) What is the initial temperature of water in C? (a) 93.50 (b) 96.71 (c) 99.63 (d) 111.4 (e) 12.2 (ii) What is the change in enthalpy of water (kJ/kg-K)? (a) 417.46 (b) 2258.0 (c) 2675.5 (d) 2506.1 (iii) What is...